scholarly journals A note on standard systems and ultrafilters

2008 ◽  
Vol 73 (3) ◽  
pp. 824-830 ◽  
Author(s):  
Fredrik Engström

AbstractLet (M, )⊨ ACA0 be such that , the collection of all unbounded sets in , admits a definable complete ultrafilter and let T be a theory extending first order arithmetic coded in such that M thinks T is consistent. We prove that there is an end-extension N ⊨ T of M such that the subsets of M coded in N are precisely those in . As a special case we get that any Scott set with a definable ultrafilter coding a consistent theory T extending first order arithmetic is the standard system of a recursively saturated model of T.

Author(s):  
Cezary Cieśliński

AbstractWe present a construction of a truth class (an interpretation of a compositional truth predicate) in an arbitrary countable recursively saturated model of first-order arithmetic. The construction is fully classical in that it employs nothing more than the classical techniques of formal proof theory.


1986 ◽  
Vol 51 (1) ◽  
pp. 222-224 ◽  
Author(s):  
Julia F. Knight

The complete diagram of a structure , denoted by Dc(), is the set of all sentences true in the structure (, a)a∈. A structure is said to be resplendent if for every sentence θ involving a new relation symbol R in addition to symbols occurring in Dc(), if θ is consistent with Dc(), then there is a relation P on such that (see[1]).Baldwin asked whether a homogeneous recursively saturated structure is necessarily resplendent. Here it is shown that this need not be the case. It is shown that if is an uncountable homogeneous resplendent model of an unstable theory, then must be saturated. The proof is related to the proof in [5] that an uncountable homogeneous recursively saturated model of first order Peano arithmetic must be saturated. The example for Baldwin's question is an uncountable homogeneous model for a particular unstable theory, such that is recursively saturated and omits some type. (The continuum hypothesis is needed to show the existence of such a model in power ℵ1.)The proof of the main result requires two lemmas.


Author(s):  
Ali Enayat

AbstractA model $${\mathcal {M}}$$ M of ZF is said to be condensable if $$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for some “ordinal” $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M , where $$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$ M ( α ) : = ( V ( α ) , ∈ ) M and $$\mathbb {L}_{{\mathcal {M}}}$$ L M is the set of formulae of the infinitary logic $$\mathbb {L}_{\infty ,\omega }$$ L ∞ , ω that appear in the well-founded part of $${\mathcal {M}}$$ M . The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., $${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for an unbounded collection of $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M ). Moreover, it can be readily shown that any $$\omega $$ ω -nonstandard condensable model of $$\mathrm {ZF}$$ ZF is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.Theorem A.Assuming a modest set-theoretic hypothesis, there is a countable model $${\mathcal {M}}$$ M of ZFC that is bothdefinably well-founded (i.e., every first order definable element of $${\mathcal {M}}$$ M is in the well-founded part of $$\mathcal {M)}$$ M ) andcofinally condensable. We also provide various equivalents of the notion of condensability, including the result below.Theorem B.The following are equivalent for a countable model$${\mathcal {M}}$$ M of $$\mathrm {ZF}$$ ZF : (a) $${\mathcal {M}}$$ M is condensable. (b) $${\mathcal {M}}$$ M is cofinally condensable. (c) $${\mathcal {M}}$$ M is nonstandard and $$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ( α ) ≺ L M M for an unbounded collection of $$ \alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M .


1983 ◽  
Vol 48 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Julia F. Knight

In [6], Nadel showed that if is a recursively saturated model of Pr = Th(ω, +) of power at most ℵ1, then there is a model such that ≡ ∞ω and can be expanded to a recursively saturated model of P. For a fixed completion T of P, can be chosen to have a recursively saturated expansion to a model of T just in case is recursive in T-saturated. (“Recursive in T-saturation” is defined just like recursive saturation except that the sets of formulas considered are those that are recursive in T.)Nadel also showed in [6] that for a fixed completion T of P, a countable nonstandard model of Pr can be expanded to a model of T (not necessarily recursively saturated) iff satisfies a condition called “exp(T)-saturation.” This condition is stronger than recursive saturation but weaker than recursive in T-saturation. Nadel left open the problem of characterizing the models of Pr of power ℵ1 such that for some , ≣ ∞ω and can be expanded to a model of T. The present paper gives such a characterization. The condition on is that it is recursively saturated, and for each n ∈ ω, the set Tn of Πn-sentences of T is recursive in some type realized in .This result can be interpreted in various ways, just as the results from [6] were interpreted in various ways in [4]. Friedman [2] introduced the notion of a “standard system.”


1982 ◽  
Vol 47 (3) ◽  
pp. 587-604 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

If is a countable recursively saturated structure and T is a recursively axiomatizable theory that is consistent with Th(), then it is well known that can be expanded to a recursively saturated model of T [7, p. 186]. This is what has made recursively saturated models useful in model theory. Recursive saturation is the weakest notion of saturation for which this expandability result holds. In fact, if is a countable model of Pr = Th(ω, +), then can be expanded to a model of first order Peano arithmetic P just in case is recursively saturated (see [3]).In this paper we investigate two natural sets of Turing degrees that tell a good deal about the expandability of a given structure. If is a recursively saturated structure, I() consists of the degrees of sets that are recursive in complete types realized in . The second set of degrees, D(), consists of the degrees of sets S such that is recursive in S-saturated. In general, I() ⊆ D(). Moreover, I() is obviously an “ideal” of degrees. For countable structures , D() is “closed” in the following sense: For any class C ⊆ 2ω, if C is co-r.e. in S for some set S such that , then there is some σ ∈ C such that . For uncountable structures , we do not know whether D() must be closed.


1978 ◽  
Vol 43 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Nicolas D. Goodman

In this paper we introduce a new notion of realizability for intuitionistic arithmetic in all finite types. The notion seems to us to capture some of the intuition underlying both the recursive realizability of Kjeene [5] and the semantics of Kripke [7]. After some preliminaries of a syntactic and recursion-theoretic character in §1, we motivate and define our notion of realizability in §2. In §3 we prove a soundness theorem, and in §4 we apply that theorem to obtain new information about provability in some extensions of intuitionistic arithmetic in all finite types. In §5 we consider a special case of our general notion and prove a kind of reflection theorem for it. Finally, in §6, we consider a formalized version of our realizability notion and use it to give a new proof of the conservative extension theorem discussed in Goodman and Myhill [4] and proved in our [3]. (Apparently, a form of this result is also proved in Mine [13]. We have not seen this paper, but are relying on [12].) As a corollary, we obtain the following somewhat strengthened result: Let Σ be any extension of first-order intuitionistic arithmetic (HA) formalized in the language of HA. Let Σω be the theory obtained from Σ by adding functionals of finite type with intuitionistic logic, intensional identity, and axioms of choice and dependent choice at all types. Then Σω is a conservative extension of Σ. An interesting example of this theorem is obtained by taking Σ to be classical first-order arithmetic.


2010 ◽  
Vol 16 (3) ◽  
pp. 345-358 ◽  
Author(s):  
Samuel Coskey ◽  
Roman Kossak

AbstractWe observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.


2016 ◽  
Vol 10 (1) ◽  
pp. 187-202 ◽  
Author(s):  
CEZARY CIEŚLIŃSKI ◽  
MATEUSZ ŁEŁYK ◽  
BARTOSZ WCISŁO

AbstractWe show that a typed compositional theory of positive truth with internal induction for total formulae (denoted by PTtot) is not semantically conservative over Peano arithmetic. In addition, we observe that the class of models of PA expandable to models of PTtot contains every recursively saturated model of arithmetic. Our results point to a gap in the philosophical project of describing the use of the truth predicate in model-theoretic contexts.


Sign in / Sign up

Export Citation Format

Share Document