Integrated design optimization of structural size and control system of piezoelectric curved shells with respect to sound radiation

2017 ◽  
Vol 56 (6) ◽  
pp. 1287-1304 ◽  
Author(s):  
Jingjuan Zhai ◽  
Guozhong Zhao ◽  
Linyuan Shang
2014 ◽  
Vol 22 (6) ◽  
pp. 1538-1546
Author(s):  
高仁璟 GAO Ren-jing ◽  
张莹 ZHANG Ying ◽  
吴书豪 WU Shu-hao ◽  
刘书田 LIU Shu-tian

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3643 ◽  
Author(s):  
Abba ◽  
Namkusong ◽  
Lee ◽  
Crespo

Irrigation systems are becoming increasingly important, owing to the increase in human population, global warming, and food demand. This study aims to design a low-cost autonomous sensor interface to automate the monitoring and control of irrigation systems in remote locations, and to optimize water use for irrigation farming. An internet of things-based irrigation monitoring and control system, employing sensors and actuators, is designed to facilitate the autonomous supply of adequate water from a reservoir to domestic crops in a smart irrigation systems. System development lifecycle and waterfall model design methodologies have been employed in the development paradigm. The Proteus 8.5 design suite, Arduino integrated design environment, and embedded C programming language are commonly used to develop and implement a real working prototype. A pumping mechanism has been used to supply the water required by the soil. The prototype provides power supply, sensing, monitoring and control, and internet connectivity capabilities. Experimental and simulation results demonstrate the flexibility and practical applicability of the proposed system, and are of paramount importance, not only to farmers, but also for the expansion of economic activity. Furthermore, this system reduces the high level of supervision required to supply irrigation water, enabling remote monitoring and control.


2019 ◽  
Vol 9 (4) ◽  
pp. 688 ◽  
Author(s):  
Luyu Li ◽  
Qigang Liang ◽  
Han Qin

Inerter-based dampers have gained great popularity in structural vibration control. In this paper, equivalent linearization methods (ELMs) for a single-degree-of-freedom (SDOF) system with a clutching inerter damper (CID) are studied. The comparison of a SDOF system with a CID and an inertial mass damper (IMD) shows the advantage of the CID. Considering that the system with the CID is nonlinear, which is problematic for its performance evaluation and the integrated design of the structure and control system, three equivalent linearization methods based on different principles are proposed and discussed in this paper. The CID is considered to be equal to a combination of an IMD and a viscous damper. The equivalent inertance and damping can be calculated using the obtained formulas for all methods. In addition, all methods are compared in a numerical study. Results show that the ELM based on period and energy is recommended for small inertance-mass ratios.


Author(s):  
M. M. Nageb ◽  
A. A. El-Samahy ◽  
M. A. Rady ◽  
A. M. A. Amin ◽  
R. H. Abd El-Hamid ◽  
...  

In a central receiver solar power plant, heliostats are arranged with respect to the central receiver so as to reflect the rays from the sun onto the power tower with high precision by tracking the sun in both the azimuth and elevation directions. The master control system of a solar power plant consists of different levels. The first level is local control; it takes care of the positioning of the heliostats when the aiming point and the time are given to the system, and informs upper level about the status of the heliostats field. The second logic level makes some important dispatch calculations of heliostats field. The most popular linear two-axis local driving system of heliostat consists of two linear driving actuators, the driving mechanism with rotary joints, and the controller. Traditional methods for heliostat design are often based on a sequential approach in which the mechanical structure is designed first and then the control system is advised. In order to reach the optimal design of heliostats, an integrated design approach that concurrently considers the interactions between the mechanical and control subsystems is necessary. In this article, an integrated design methodology of heliostat drive system is presented. The methodology is based on modeling and simulation. The dynamic models that describe the behavior of the mechanical and control components are presented. These models involve mechanical and control design variables such as the motor parameters, power screw (including back lash), heliostat mass, load forces, and wind forces. Matlab, Solidwork, and Simulink are chosen to apply PID tracking control to heliostats, due to the ability to arbitrarily model complex mechanical systems, directly import properly constructed, third-party 3D CAD models, simulate integrated control, handle a variety of robotics nomenclature, and other features. The present methodology is employed for integrated design of a single facet small size heliostat with mirror area of 3 m2.The methods described in this article also show a way to rapidly simulate novel and complex heliostat geometries. Analysis of the heliostat drive system performance and dynamic characteristics according to mechanical and control design variables is conducted for the purpose of control system design and performance optimization. The drive system performance is evaluated in terms of positioning tracking errors, system response, and control system behavior. It is shown that the mechanical characteristics of the ball power screw actuator such as ball-screw diameter, lead, overall flexibility, stiffness, backlash, and inertia significantly influence the performance of drive system.


Author(s):  
Xueguan Song ◽  
Tianci Zhang ◽  
Yongliang Yuan ◽  
Xiaobang Wang ◽  
Wei Sun

Large cable shovel is a complex mechatronic system used for primary production in the open pit mine. For such structure-control highly coupled system, the conventional sequential design strategy (structure design followed by the control optimization in sequence) cannot manage this interaction adequately and explicitly. In addition, the large cable shovel consists of large number of sub-systems and/or disciplines, which also poses challenges to the global optimal design for large cable shovel. To enhance large cable shovel’s performance, an integrated design optimization strategy combining the structure-control simultaneous design (co-design) and the multidisciplinary design optimization is established in this study to perform the global optimization for the large cable shovel. In this proposed multidisciplinary co-design, the point-to-point trajectory planning method is extended to achieve the simultaneous optimization of the structure and control system. Besides the structure and control, the dynamics/vibration and energy consumption are taken into account in this multidisciplinary co-design. The objectives are to minimize the energy consumption per volume of ore and to minimize the excavating time. By comparing the multidisciplinary co-design and the conventional sequential design, it is found that the multidisciplinary co-design can not only make large cable shovel’s structure more compact with relatively small vibration, but also generate more flexible control speeds by making the best of the power motors.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Saeed Azad ◽  
Michael J. Alexander-Ramos

Abstract Optimization of dynamic engineering systems generally requires problem formulations that account for the coupling between embodiment design and control system design simultaneously. Such formulations are commonly known as combined optimal design and control (co-design) problems, and their application to deterministic systems is well established in the literature through a variety of methods. However, an issue that has not been addressed in the co-design literature is the impact of the inherent uncertainties within a dynamic system on its integrated design solution. Accounting for these uncertainties transforms the standard, deterministic co-design problem into a stochastic one, thus requiring appropriate stochastic optimization approaches for its solution. This paper serves as the starting point for research on stochastic co-design problems by proposing and solving a novel problem formulation based on robust design optimization (RDO) principles. Specifically, a co-design method known as multidisciplinary dynamic system design optimization (MDSDO) is used as the basis for an RDO problem formulation and implementation. The robust objective and inequality constraints are computed per usual as functions of their first-order-approximated means and variances, whereas analysis-based equality constraints are evaluated deterministically at the means of the random decision variables. The proposed stochastic co-design problem formulation is then implemented for two case studies, with the results indicating the importance of the robust approach on the integrated design solutions and performance measures.


Sign in / Sign up

Export Citation Format

Share Document