Integrated design of guidance and control system considering body line-of-sight angle and input constraints

Author(s):  
Maosen Shao ◽  
Cheng Xu ◽  
Jun Zhou ◽  
Bin ZHAO
Aviation ◽  
2012 ◽  
Vol 16 (4) ◽  
pp. 130-135
Author(s):  
Vaidotas Kondroška ◽  
Jonas Stankūnas

This work reviews the innovative and progressive methods of determination and analysis of safety objectives using Vilnius A-SMGCS example. The aim of the analysis is to determine how failures in this system could affect flight safety in Vilnius aerodrome. Identified safety objectives will limit the frequency of occurrence of hazards enough for the associated risk to be acceptable, and will ensure that appropriate mitigation means are reflected subsequently as Safety Requirements for the system. Analysis reflects aspects of A-SMGCS Safety objectives, which should be taken into consideration. Santrauka Darbe apžvelgiami progresyvūs saugos tikslų analizės metodai pagal Vilniaus aerodromo automatizuotos antžeminio eismo stebėjimo ir kontrolės sistemos veiklos pavyzdį. Analizuojama, kaip šios sistemos sutrikimai gali paveikti skrydžių saugą Vilniaus aerodrome. Remiantis galimų pavojų skrydžių saugai analize, tyrime nustatyti saugos tikslai, pagal kuriuos vėliau bus numatomos riziką mažinančios priemonės (galimų pavojų neutralizavimui ar kylančios rizikos sumažinimui iki priimtino lygio). Straipsnyje pateikiami veiksniai, kuriuos reikėtų įvertinti nustatant aerodromo automatizuotos antžeminio eismo stebėjimo ir kontrolės sistemos saugos tikslus.


1991 ◽  
Author(s):  
HIROFUMI EGUCHI ◽  
HIDEHIKO KUBO ◽  
TADASHI YAMASHITA

2021 ◽  
Vol 10 (4) ◽  
pp. 1893-1904
Author(s):  
Putri Nur Farhanah Mohd Shamsuddin ◽  
Roshahliza M. Ramli ◽  
Muhamad Arifpin Mansor

An excellent navigation, guidance, and control (NGC) system had a high impact on trajectory tracking and the following scenarios. Both scenarios will include the heading, tangent, and velocity parameters in the computation. However, the control system design problem is not a new issue in the unmanned surface vehicle (USV) and autonomous ground vehivle (AGV) due to this constraint faced by many researchers since early these autonomy developments. Hence, this paper listed and emphasizing the techniques, including techniques implementation, strength, and the algorithm's constraints, a fusion of several techniques implemented for vehicle's stability, a turning ahead, and heading estimation. This paper concerns the similar algorithm used in the USV and AGV. Most of the selected techniques are basic algorithms and have been frequently implemented to control both vehicles' systems. Previous research shows pure pursuit guidance is the most popular technique in AGV to control the degree-of-freedom (DOF) velocity and the dynamic rate (sway, surge, and yaw). Simultaneously, the line of sight (LOS) controller is very compatible with controlling the movement of the USV. In conclusion, the technique's simulation test needs further research that will expose in the actual situation.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3643 ◽  
Author(s):  
Abba ◽  
Namkusong ◽  
Lee ◽  
Crespo

Irrigation systems are becoming increasingly important, owing to the increase in human population, global warming, and food demand. This study aims to design a low-cost autonomous sensor interface to automate the monitoring and control of irrigation systems in remote locations, and to optimize water use for irrigation farming. An internet of things-based irrigation monitoring and control system, employing sensors and actuators, is designed to facilitate the autonomous supply of adequate water from a reservoir to domestic crops in a smart irrigation systems. System development lifecycle and waterfall model design methodologies have been employed in the development paradigm. The Proteus 8.5 design suite, Arduino integrated design environment, and embedded C programming language are commonly used to develop and implement a real working prototype. A pumping mechanism has been used to supply the water required by the soil. The prototype provides power supply, sensing, monitoring and control, and internet connectivity capabilities. Experimental and simulation results demonstrate the flexibility and practical applicability of the proposed system, and are of paramount importance, not only to farmers, but also for the expansion of economic activity. Furthermore, this system reduces the high level of supervision required to supply irrigation water, enabling remote monitoring and control.


Author(s):  
Guanjie Hu ◽  
Jianguo Guo ◽  
Jun Zhou

An integrated guidance and control method is investigated for interceptors with impact angle constraint against a high-speed maneuvering target. Firstly, a new control-oriented model with impact angle constraint of the integrated guidance and control system is built in the pitch plane by combining the engagement kinematics and missile dynamics model between the interceptor and target. Secondly, the flight path angle of the target is estimated by extended Kalman filter in order to transform the terminal impact angle constraint into the terminal line-of-sight angle constraint. Thirdly, a nonlinear adaptive sliding mode control law of the integrated guidance and control system is designed in order to directly obtain the rudder deflection command, which eliminates time delay caused by the traditional backstepping control method. Then the Lyapunov stability theory is used to prove the stability of the whole closed-loop integrated guidance and control system. Finally, the simulation results confirm that the integrated guidance and control method proposed in this paper can effectively improve the interception performance of the interceptor to a high-speed maneuvering target.


2019 ◽  
Vol 9 (4) ◽  
pp. 688 ◽  
Author(s):  
Luyu Li ◽  
Qigang Liang ◽  
Han Qin

Inerter-based dampers have gained great popularity in structural vibration control. In this paper, equivalent linearization methods (ELMs) for a single-degree-of-freedom (SDOF) system with a clutching inerter damper (CID) are studied. The comparison of a SDOF system with a CID and an inertial mass damper (IMD) shows the advantage of the CID. Considering that the system with the CID is nonlinear, which is problematic for its performance evaluation and the integrated design of the structure and control system, three equivalent linearization methods based on different principles are proposed and discussed in this paper. The CID is considered to be equal to a combination of an IMD and a viscous damper. The equivalent inertance and damping can be calculated using the obtained formulas for all methods. In addition, all methods are compared in a numerical study. Results show that the ELM based on period and energy is recommended for small inertance-mass ratios.


Sign in / Sign up

Export Citation Format

Share Document