scholarly journals Modeling chemical reactions in porous media: a review

2021 ◽  
Vol 33 (6) ◽  
pp. 2279-2300
Author(s):  
Bettina Detmann

AbstractFirst, different porous media theories are presented. Some approaches are based on the classical mixture theory for fluids introduced in the 1960s by Truesdell and Coworkers. One of the first researchers who extended the theory to porous media (thus mixtures containing at least one solid constituent) and also accounting for chemical reactions was Bowen. Another important branch of porous media theory goes back to Biot. In the beginning, he dealt with classical geotechnical problems and set up his model empirically. Mathematicians often use reaction–diffusion equations which are limited in comparison with continuum models by several restrictive assumptions and very often only applicable to special problems. In this paper, the focus lies on approaches based on the mixture theory which incorporate chemical reactions. Different strategies to describe the chemical potential for mixtures are presented, and different opinions about the exploitation of the second law of thermodynamics for mixtures are put forward. Finally, several works of different types including chemical reactions in porous media are summarized.

2020 ◽  
Vol 62 (4) ◽  
pp. 2203-2210
Author(s):  
Ercan M. Dede ◽  
Yuqing Zhou ◽  
Tsuyoshi Nomura

Abstract Microchannel reactors are critical in biological plus energy-related applications and require meticulous design of hundreds-to-thousands of fluid flow channels. Such systems commonly comprise intricate space-filling microstructures to control the fluid flow distribution for the reaction process. Traditional flow channel design schemes are intuition-based or utilize analytical rule-based optimization strategies that are oversimplified for large-scale domains of arbitrary geometry. Here, a gradient-based optimization method is proposed, where effective porous media and fluid velocity vector design information is exploited and linked to explicit microchannel parameterizations. Reaction-diffusion equations are then utilized to generate space-filling Turing pattern microchannel flow structures from the porous media field. With this computationally efficient and broadly applicable technique, precise control of fluid flow distribution is demonstrated across large numbers (on the order of hundreds) of microchannels.


1996 ◽  
Vol 34 (14) ◽  
pp. 1611-1621 ◽  
Author(s):  
Lynn Schreyer Bennethum ◽  
John H. Cushman ◽  
Márcio A. Murad

Author(s):  
H.H. Rotermund

Chemical reactions at a surface will in most cases show a measurable influence on the work function of the clean surface. This change of the work function δφ can be used to image the local distributions of the investigated reaction,.if one of the reacting partners is adsorbed at the surface in form of islands of sufficient size (Δ>0.2μm). These can than be visualized via a photoemission electron microscope (PEEM). Changes of φ as low as 2 meV give already a change in the total intensity of a PEEM picture. To achieve reasonable contrast for an image several 10 meV of δφ are needed. Dynamic processes as surface diffusion of CO or O on single crystal surfaces as well as reaction / diffusion fronts have been observed in real time and space.


2006 ◽  
Vol 11 (2) ◽  
pp. 115-121 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

The aim of this article is to study the existence of positive weak solution for a quasilinear reaction-diffusion system with Dirichlet boundary conditions,− div(|∇u1|p1−2∇u1) = λu1α11u2α12... unα1n,   x ∈ Ω,− div(|∇u2|p2−2∇u2) = λu1α21u2α22... unα2n,   x ∈ Ω, ... , − div(|∇un|pn−2∇un) = λu1αn1u2αn2... unαnn,   x ∈ Ω,ui = 0,   x ∈ ∂Ω,   i = 1, 2, ..., n,  where λ is a positive parameter, Ω is a bounded domain in RN (N > 1) with smooth boundary ∂Ω. In addition, we assume that 1 < pi < N for i = 1, 2, ..., n. For λ large by applying the method of sub-super solutions the existence of a large positive weak solution is established for the above nonlinear elliptic system.


2019 ◽  
pp. 134-197
Author(s):  
V.E. . Sergei

The article is dedicated to the history of the Military Historical Museum of Artillery, Engineering and Signal Corps. The author examines the main stages of the museums formation, starting with the foundation of the Arsenal, established in St. Petersburg at the orders of Peter the Great on August 29th 1703 for the safekeeping and preservation of memory, for eternal glory of unique arms and military trophies. In 1756, on the base of the Arsenals collection, the General Inspector of Artillery Count P.I. created the Memorial Hall, set up at the Arsenal, on St. Petersburgs Liteyny Avenue. By the end of the 18th century the collection included over 6,000 exhibits. In 1868 the Memorial Hall was transferred to the New Arsenal, at the Crownwork of the Petropavlovsky Fortress, and renamed the Artillery Museum (since 1903 the Artillery Historical Museum). A large part of the credit for the development and popularization of the collection must be given to the historian N.E. Brandenburg, the man rightly considered the founder of Russias military museums, who was the chief curator from 1872 to 1903. During the Civil and Great Patriotic Wars a significant part of the museums holdings were evacuated to Yaroslavl and Novosibirsk. Thanks to the undying devotion of the museums staff, it not only survived, but increased its collection. In the 1960s over 100,000 exhibits were transferred from the holdings of the Central Historical Museum of Military Engineering and the Military Signal Corps Museum. In 1991 the collection also received the entire Museum of General Field Marshal M.I. Kutuzov, transferred from the Polish town of Bolesawjec. The Military Historical Museum of Artillery, Engineering and Signal Coprs is now one of the largest museums of military history in the world. It holds an invaluable collection of artillery and ammunition, of firearms and cold steel arms, military engineering and signal technology, military banners, uniforms, a rich collection of paintings and graphic works, orders and medals, as well as extensive archives, all dedicated to the history of Russian artillery and the feats of our nations defenders.Статья посвящена истории создания ВоенноИсторического музея артиллерии, инженерных войск и войск связи. Автор рассматривает основные этапы становления музея, начиная с основания Арсенала, созданного в СанктПетербурге по приказу Петра I 29 августа 1703 года для хранения и сохранения памяти, во имя вечной славы уникального оружия и военных трофеев. В 1756 году на базе коллекции Арсенала генеральный инспектор артиллерии граф П. И. создал мемориальный зал, установленный при Арсенале, на Литейном проспекте СанктПетербурга. К концу 18 века коллекция насчитывала более 6000 экспонатов. В 1868 году Мемориальный зал был перенесен в Новый Арсенал, на венец Петропавловской крепости, и переименован в Артиллерийский музей (с 1903 года Артиллерийский Исторический музей). Большая заслуга в развитии и популяризации коллекции принадлежит историку Н.Е. Бранденбургу, человеку, по праву считавшемуся основателем российских военных музеев, который был главным хранителем с 1872 по 1903 год. В годы Гражданской и Великой Отечественной войн значительная часть фондов музея была эвакуирована в Ярославль и Новосибирск. Благодаря неусыпной преданности сотрудников музея, он не только сохранился, но и пополнил свою коллекцию. В 1960х годах более 100 000 экспонатов были переданы из фондов Центрального исторического военноинженерного музея и Музея войск связи. В 1991 году коллекцию также получил весь музей генералфельдмаршала М. И. Кутузова, переданный из польского города Болеславец. Военноисторический музей артиллерии, инженерных войск и войск связи в настоящее время является одним из крупнейших музеев военной истории в мире. Здесь хранится бесценная коллекция артиллерии и боеприпасов, огнестрельного и холодного оружия, военной техники и сигнальной техники, военных знамен, обмундирования, богатая коллекция живописных и графических работ, орденов и медалей, а также обширные архивы, посвященные истории русской артиллерии и подвигам защитников нашего народа.


2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


Sign in / Sign up

Export Citation Format

Share Document