scholarly journals Patient-specific resurfacing implant knee surgery in subjects with early osteoarthritis results in medial pivot and lateral femoral rollback during flexion: a retrospective pilot study

Author(s):  
Philippe Moewis ◽  
René Kaiser ◽  
Adam Trepczynski ◽  
Christoph von Tycowicz ◽  
Leonie Krahl ◽  
...  

Abstract Purpose Metallic resurfacing implants have been developed for the treatment of early, small, condylar and trochlear osteoarthritis (OA) lesions. They represent an option for patients who do not fulfill the criteria for unicompartmental knee arthroplasty (UKA) or total knee arthroplasty (TKA) or are too old for biological treatment. Although clinical evidence has been collected for different resurfacing types, the in vivo post-operative knee kinematics remain unknown. The present study aims to analyze the knee kinematics in subjects with patient-specific episealer implants. This study hypothesized that patient-specific resurfacing implants would lead to knee kinematics close to healthy knees, resulting in medial pivot and a high degree of femoral rollback during flexion. Methods Retrospective study design. Fluoroscopic analysis during unloaded flexion–extension and loaded lunge was conducted at > 12 months post-surgery in ten episealer knees, and compared to ten healthy knees. Pre- and post-operative clinical data of the episealer knees were collected using a visual analog scale (VAS), the EQ 5d Health, and the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaires. Results A consistent medial pivot was observed in both episealer and healthy knees. Non-significant differences were found in the unloaded (p = 0.15) and loaded (p = 0.51) activities. Although lateral rollback was observed in both groups, it was significantly higher for the episealer knees in both the unloaded (p = 0.02) and loaded (p = 0.01) activities. Coupled axial rotation was significantly higher in the unloaded (p = 0.001) but not in the loaded (p = 0.06) activity in the episealer knees. Improved scores were observed at 1-year post-surgery in the episealer subjects for the VAS (p = 0.001), KOOS (p = 0.001) and EQ Health (p = 0.004). Conclusion At 12 month follow-up, a clear physiological knee kinematics pattern of medial pivot, lateral femoral rollback and coupled axial external femoral rotation during flexion was observed in patients treated with an episealer resurfacing procedure. However, higher femoral rollback and axial external rotation in comparison to healthy knees was observed, suggesting possible post-operative muscle weakness and consequent insufficient stabilization at high flexion.

2021 ◽  
Author(s):  
Kenichi Kono ◽  
Takaharu Yamazaki ◽  
Shoji Konda ◽  
Hiroshi Inui ◽  
Sakae Tanaka ◽  
...  

Abstract Background The normal knee kinematics during asymmetrical kneeling such as the sitting sideways remains unknown. This study aimed to clarify in vivo kinematics during sitting sideways of normal knees. Methods Twelve knees from six volunteers were examined. Under fluoroscopy, each volunteer performed a sitting sideways. A two-dimensional/three-dimensional registration technique was used. The rotation angle, varus-valgus angle, anteroposterior translation of the medial and lateral sides of the femur relative to the tibia, and kinematic pathway in each flexion angle was evaluated. Results Bilateral knees during sitting sideways showed a femoral external rotation relative to the tibia with flexion. Whereas the ipsilateral knees showed valgus movement, and the contralateral knees showed varus movement. The medial side of the contralateral knees was more posteriorly located than that of the ipsilateral knees beyond 110° of flexion. The lateral side of the contralateral knees was more anteriorly located than that of the ipsilateral knees from 120° to 150° of flexion. In the ipsilateral knees, a medial pivot pattern followed by a bicondylar rollback was observed. In the contralateral knees, no significant movement followed by a bicondylar rollback was observed. Conclusion Even though the asymmetrical kneeling such as sitting sideways, the knees did not display asymmetrical movement.


Author(s):  
Jiaqi Tan ◽  
Diyang Zou ◽  
Xianlong Zhang ◽  
Nan Zheng ◽  
Yuqi Pan ◽  
...  

Background The medial-pivot (MP) prosthesis was developed to produce more physiological postoperative knee kinematics and better patient satisfaction than traditional prostheses, but outcomes are inconsistent in different studies of Caucasian patients. This study aimed to investigate the postoperative patient satisfaction and in vivo knee kinematics of the MP and posterior-stabilized (PS) prosthesis during gait activity in Chinese patients.Methods A retrospective analysis of 12 patients was received for this study in each MP group and PS group. Patient-reported satisfaction level and Forgotten Joint Score (FJS) were evaluated with questionnaires. A dual fluoroscopic imaging system was used to investigate in vivo knee kinematics of MP and PS total knee arthroplasty (TKA) during treadmill walking at a speed of 0.4 m/s.Results Comparable promising patient satisfaction and overall FJS (MP 60.7 ± 15.35 vs. PS 51.3 ± 17.62, p = 0.174) were found between the MP and PS groups. Peak flexion appeared at around 70% of gait cycle with values of 52.4 ± 7.4° for MP and 50.1 ± 3.6° for PS groups (no difference). Both groups maintained a stable position at the stance phase and began to translated anteriorly at toe-off with an amount of 4.5 ± 2.3 mm in the MP and 6.6 ± 2.7 mm in the PS (p = 0.08) group until late swing. The range of this external rotation motion was 5.9 ± 4.8 and 6.2 ± 4.1° (p = 0.79) for the MP and PS, respectively.Conclusion A similar knee kinematics pattern characterized by a loss of early-stance knee flexion and femoral rollback during walking was observed in the MP and PS TKAs. Our study confirmed similar effectiveness of MP TKA compared to PS TKA in Chinese patients, while the change of knee kinematics of both implants during slow walking should be noted.


Author(s):  
Young Dong Song ◽  
Shinichiro Nakamura ◽  
Shinichi Kuriyama ◽  
Kohei Nishitani ◽  
Hiromu Ito ◽  
...  

AbstractSeveral concepts may be used to restore normal knee kinematics after total knee arthroplasty. One is a kinematically aligned (KA) technique, which restores the native joint line and limb alignment, and the other is the use of a medial pivot knee (MPK) design, with a ball and socket joint in the medial compartment. This study aimed to compare motions, contact forces, and contact stress between mechanically aligned (MA) and KA (medial tilt 3° [KA3] and 5° [KA5]) models in MPK. An MPK design was virtually implanted with MA, KA3, and KA5 in a validated musculoskeletal computer model of a healthy knee, and the simulation of motion and contact forces was implemented. Anteroposterior (AP) positions, mediolateral positions, external rotation angles of the femoral component relative to the tibial insert, and tibiofemoral contact forces were evaluated at different knee flexion angles. Contact stresses on the tibial insert were calculated using finite element analysis. The AP position at the medial compartment was consistent for all models. From 0° to 120°, the femoral component in KA models showed larger posterior movement at the lateral compartment (0.3, 6.8, and 17.7 mm in MA, KA3, and KA5 models, respectively) and larger external rotation (4.2°, 12.0°, and 16.8° in the MA, KA3, and KA5 models, respectively) relative to the tibial component. Concerning the mediolateral position of the femoral component, the KA5 model was positioned more medially. The contact forces at the lateral compartment of all models were larger than those at the medial compartment at >60° of knee flexion. The peak contact stresses on the tibiofemoral joint at 90° and 120° of knee flexion were higher in the KA models. However, the peak contact stresses of the KA models at every flexion angle were <20 MPa. The KA technique in MPK can successfully achieve near-normal knee kinematics; however, there may be a concern for higher contact stresses on the tibial insert.


Author(s):  
Jeffrey E. Bischoff ◽  
Justin S. Hertzler

Computational modeling of the reconstructed knee is an important tool in designing components for maximum functionality and life. Utilization of boundary conditions consistent with in vivo gait loading in such models enables predictions of knee kinematics and polyethylene damage [1–4], which can then be used to optimize component design. Several recent clinical studies have focused on complications associated with the patellofemoral joint [5–6], highlighting the need to better understand the mechanics of this compartment of total knee arthroplasty (TKA). This study utilizes a computational model to characterize the impact of gait loading on the mechanics of the patella in TKA.


2010 ◽  
Vol 25 (6) ◽  
pp. 964-969 ◽  
Author(s):  
Atsushi Kitagawa ◽  
Nobuhiro Tsumura ◽  
Takaaki Chin ◽  
Kazuyoshi Gamada ◽  
Scott A. Banks ◽  
...  

2019 ◽  
Vol 8 (12) ◽  
pp. 593-600 ◽  
Author(s):  
Yong-Gon Koh ◽  
Jin-Ah Lee ◽  
Hwa-Yong Lee ◽  
Hyo-Jeong Kim ◽  
Hyun-Seok Chung ◽  
...  

Aims Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Methods Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated. Results The convex design, the femoral rollback, and internal rotation were similar to those of the native knee. However, the conforming design showed a significantly decreased femoral rollback and internal rotation compared with that of the native knee (p < 0.05). The flat design showed a significant difference in the femoral rollback; however, there was no difference in the tibial internal rotation compared with that of the native knee. Conclusion The geometry of the surface of the lateral tibial plateau determined the ability to restore the rotational kinematics of the native knee. Surgeons and implant designers should consider the geometry of the anatomical lateral tibial plateau as an important factor in the restoration of native knee kinematics after lateral UKA. Cite this article: Bone Joint Res 2019;8:593–600.


Author(s):  
Ikram Nizam ◽  
Ashish Batra ◽  
Sophia Gogos

ObjectivesMost patients want to resume normal activities as soon as possible after total knee arthroplasty (TKA), with driving an integral aspect to re-establish social and recreational independence. This study aimed to determine when patients resumed driving after TKA.MethodsAll patients undergoing patient-specific instrumented (PSI) medial pivot TKA between January 2017 and April 2018 were included. Patients who did not drive were excluded. A detailed questionnaire was sent to patients 2 weeks after surgery to record their driving status. 50 patients were randomly selected to assess flexion at the hip, knee and ankle joints while seated in the driver’s seat of their own vehicle.Results160 patients (female=94 and male=66) with a mean age of 68 years (45–90 years) underwent a PSI TKA (left side [L]=75, right side [R]=85). 73% patients returned to driving within the first 3 weeks after surgery, of which 15 (10%) resumed driving within the first postoperative week, 52 (35%) in the second week and 41 (28%) in the third week. The median time to resume driving following surgery was 3 weeks for both operative sides, with IQR of 2.0 (L) and 1.0 (R).ConclusionA majority of patients resume driving within 3 weeks after undergoing a PSI TKA, regardless of operative side or transmission of vehicle.Level of evidenceIV


The Knee ◽  
2020 ◽  
Vol 27 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Umberto Cardinale ◽  
Laura Bragonzoni ◽  
Marco Bontempi ◽  
Domenico Alesi ◽  
Tommaso Roberti di Sarsina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document