Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting

2015 ◽  
Vol 83 (1-4) ◽  
pp. 167-175 ◽  
Author(s):  
Wenming Jiang ◽  
Xu Chen ◽  
Benjing Wang ◽  
Zitian Fan ◽  
Hebao Wu
2006 ◽  
Vol 116-117 ◽  
pp. 453-456 ◽  
Author(s):  
Yong Lin Kang ◽  
Yue Xu ◽  
Zhao Hui Wang

In this paper, with a newly self-developed rotating barrel rheomoulding machine(RBRM), microstructures and mechanical properties of rheo-die casting A356 alloy were studied. In order to clearly show the characteristic of rheo-die casting, liquid die casting and semi-solid casting were done too. The experimental results showed that microstructures of rheo-die casting were composed of solid grains, which were finer and rounder, and had fewer pores. In the three technologies, integrated mechanical properties of semi-solid rheo-die casting were the best.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Abou Bakr Elshalakany ◽  
T. A. Osman ◽  
A. Khattab ◽  
B. Azzam ◽  
M. Zaki

A356 hypoeutectic aluminum-silicon alloys matrix composites reinforced by different contents of multiwalled carbon nanotubes (MWCNTs) were fabricated using a combination of rheocasting and squeeze casting techniques. A novel approach by adding MWCNTs into A356 aluminum alloy matrix with CNTs has been performed. This method is significant in debundling and preventing flotation of the CNTs within the molten alloy. The microstructures of nanocomposites and the interface between the aluminum alloy matrix and the MWCNTs were examined by using an optical microscopy (OM) and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis (EDX). This method remarkably facilitated a uniform dispersion of nanotubes within A356 aluminum alloy matrix as well as a refinement of grain size. In addition, the effects of weight fraction (0.5, 1.0, 1.5, 2.0, and 2.5 wt%) of the CNT-blended matrix on mechanical properties were evaluated. The results have indicated that a significant improvement in ultimate tensile strength and elongation percentage of nanocomposite occurred at the optimal amount of 1.5 wt% MWCNTs which represents an increase in their values by a ratio of about 50% and 280%, respectively, compared to their corresponding values of monolithic alloy. Hardness of the samples was also significantly increased by the addition of CNTs.


Sign in / Sign up

Export Citation Format

Share Document