Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding

2015 ◽  
Vol 83 (1-4) ◽  
pp. 673-679 ◽  
Author(s):  
Yong Zhao ◽  
Sheng Jiang ◽  
Shaofeng Yang ◽  
Zhengping Lu ◽  
Keng Yan
10.30544/381 ◽  
2006 ◽  
Vol 12 (4) ◽  
pp. 275-295 ◽  
Author(s):  
V. SOUNDARARAJAN ◽  
M. VALANT ◽  
R. KOVACEVIC

Friction stir welding (FSW) is an innovative solid-state material joining method invented by The Welding Institute (TWI) in 1991 and has been one of the most significant joining technology developments in the last two decades. It has evolved into a process focused on joining arc weldable (5xxx and 6xxx) and unweldable (2xxx and 7xxx) aluminum alloys to a point where it can be implemented by the aerospace and automotive industries for their joining needs.Research towards the further extension of the process to join dissimilar metal combinations like Fe-Al and Al-Cu is currently underway. A few of the important advantages of FSW over conventional joining techniques include improved joint properties and performance, low-deformation of the workpieces, a significant reduction in production costs and the freeing of skilled labor for use in other tasks. Compared to the conventional arc-welding of aluminum alloys, FSW produces a smaller heat affected zone, and it also allows the successful joining of aluminum alloys, steel, titanium, and dissimilar alloys with a stronger joint.


2010 ◽  
Vol 638-642 ◽  
pp. 2058-2063 ◽  
Author(s):  
Koji Inada ◽  
Hidetoshi Fujii ◽  
Young Su Ji ◽  
Yoshiaki Morisada ◽  
Kiyoshi Nogi

Friction powder processing (FPP) has been developed based on the principle of friction stir welding (FSW) or friction stir processing (FSP). The FPP is a method to design the properties of the processed area by performing FSP after powder with a controlled composition is placed in the gap between two plates. The FPP experiments were performed using a tool with the shoulder diameter of 15mm and the probe diameter of 6mm. The tool traveled at 100mm/min and rotated at 1500rpm. A1050 aluminum was used as the plate. Pure Al powder (89μm average grain diameter) and pure Cu powder (106μm average grain diameter) were used as the additives. When using pure Al powder, the pure Al powder left in the base metal after the first pass is sufficiently stirred by performing the second pass and then a good joint without defects is obtained. However, more than three passes are not effective for improving the strength of the welded area. When using pure Cu powder, nanoscale Al2Cu precipitates are uniformly formed in the stir zone, and accordingly, the hardness is significantly increased.


2011 ◽  
Vol 189-193 ◽  
pp. 3266-3269 ◽  
Author(s):  
Yu Hua Chen ◽  
Peng Wei ◽  
Quan Ni ◽  
Li Ming Ke

Titanium alloy TC1 and Aluminum alloy LF6 were jointed by friction stir welding (FSW), and the influence of process parameters on formation of weld surface, cross-section morphology and tensile strength were studied. The results show that, Titanium and Aluminum dissimilar alloy is difficult to be joined by FSW, and some defects such as cracks and grooves are easy to occur. When the rotational speed of stir head(n) is 750r/min and 950r/min, the welding speed(v) is 118mm/min or 150mm/min, a good formation of weld surface can be obtained, but the bonding of titanium/aluminum interface in the cross-section of weld joint is bad when n is 750r/min which results in a low strength joint. When n is 950r/min and v is 118mm/min,the strength of the FSW joint of Titanium/Aluminum dissimilar materials is 131MPa which is the highest.


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


Author(s):  
Sipokazi Mabuwa ◽  
Velaphi Msomi

The use of aluminium alloys continues to grow in many applications to mention a few aerospace, automotive, electronics, electricity, construction and food packaging. With so much demand there is a new interest in welding of dissimilar aluminium alloys. Some of the welding techniques used to join dissimilar aluminium alloys include friction stir welding and TIG welding. The welding of dissimilar alloys affects the mechanical properties negatively due to porosity and cracking during the welding. This then suggests that there should be a process which can be used to improve the dissimilar alloys mechanical properties post its production. Friction stir processing was found to be one of the mechanical techniques that could be used to improve the mechanical properties of the material. This paper reports on the literature on the friction stir welding, TIG welding and friction stir processing techniques published so far, with the aim to identify the gap in the use of friction stir process as a post processing technique of the weld joints.


Measurement ◽  
2018 ◽  
Vol 127 ◽  
pp. 198-204 ◽  
Author(s):  
Reza Bagherian Azhiri ◽  
Ramin Mehdizad Tekiyeh ◽  
Ebrahim Zeynali ◽  
Masoud Ahmadnia ◽  
Farid Javidpour

Sign in / Sign up

Export Citation Format

Share Document