Enhanced machining performance and lubrication mechanism of electrostatic minimum quantity lubrication-EMQL milling process

2017 ◽  
Vol 94 (1-4) ◽  
pp. 655-666 ◽  
Author(s):  
Shuiquan Huang ◽  
Tao Lv ◽  
Minghuan Wang ◽  
Xuefeng Xu
Author(s):  
Anup A Junankar ◽  
Yashpal Yashpal ◽  
Jayant K Purohit

A minimum quantity lubrication system using biodegradable cutting fluids has facilitated the excellent machining performance and is observed as more sustainable. In the view of enhancement of machining performance, the utilization of nanofluids with a minimum quantity lubrication system as a cutting fluid delivered noteworthy outcomes. For the present experimental investigation, the monotype nanofluids (copper oxide and zinc oxide) and a hybrid nanofluid (copper oxide/zinc oxide) were synthesized by using a two-step method. Scanning electron microscopy and energy dispersive X-ray analysis were performed to characterize the synthesized nanoparticles. A vegetable oil was utilized as a base fluid and three types of nanofluids were prepared by the addition of a surfactant (butenol). Also, ultrasonication has been performed to avoid the agglomeration of nanoparticles into the base fluid. The thermal conductivity evaluation of prepared nanofluids was carried out by using a hot wire method. The effects of three nanofluids were investigated by considering three machining input variables (cutting speed, feed rate and depth of cut) on response variables (surface roughness and cutting zone temperature) during bearing steel turning under nanofluid minimum quantity lubrication cooling conditions. The multi-objective optimization was performed by using grey relational analysis and found that the hybrid nanofluid (copper oxide/zinc oxide) was noted as the highly effective cooling condition as equated to copper oxide and zinc oxide monotype nanofluid. The hybrid nanofluid (copper oxide/zinc oxide) shows a 65% and 60% reduction in surface roughness on comparing with copper oxide and zinc oxide nanofluids, respectively. Also, the minimization of cutting zone temperature was observed under the hybrid nanofluid (copper oxide/zinc oxide) by 11% and 13% on equating with copper oxide and zinc oxide nanofluids, respectively.


2018 ◽  
Vol 2 (3) ◽  
pp. 50 ◽  
Author(s):  
Hussien Hegab ◽  
Hossam Kishawy

Difficult-to-cut materials have been widely employed in many engineering applications, including automotive and aeronautical designs because of their effective properties. However, other characteristics; for example, high hardness and low thermal conductivity has negatively affected the induced surface quality and tool life, and consequently the overall machinability of such materials. Inconel 718, is widely used in many industries including aerospace; however, the high temperature generated during machining is negatively affecting its machinability. Flood cooling is a commonly used remedy to improve machinability problems; however, government regulation has called for further alternatives to reduce the environmental and health impacts of flood cooling. This work aimed to investigate the influence of dispersed multi-wall carbon nanotubes (MWCNTs) and aluminum oxide (Al2O3) gamma nanoparticles, on enhancing the minimum quantity lubrication (MQL) technique cooling and lubrication capabilities during turning of Inconel 718. Machining tests were conducted, the generated surfaces were examined, and the energy consumption data were recorded. The study was conducted under different design variables including cutting speed, percentage of added nano-additives (wt.%), and feed velocity. The study revealed that the nano-fluids usage, generally improved the machining performance when cutting Inconel 718. In addition, it was shown that the nanotubes additives provided better improvements than Al2O3 nanoparticles.


Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


Author(s):  
Archana Thakur ◽  
Alakesh Manna ◽  
Sushant Samir

The present work evaluates the performance of different machining environments such as dry, wet, minimum quantity lubrication, Al2O3 nanofluids based minimum quantity lubrication, CuO nanofluids based minimum quantity lubrication and Al–CuO hybrid nanofluids based minimum quantity lubrication on machining performance characteristics during turning of EN-24. The nanofluids and hybrid nanofluids were prepared by adding the Al2O3, CuO and Al2O3/CuO to the soluble oil with different weight percentages (0.5 wt.%, 1 wt.%, 1.5 wt.%). The thermal and tribological properties of hybrid nanofluid and nanofluids were analyzed. The comparative analysis of different turning environments has been done. From comparative analysis it is clearly observed that the nanofluids and hybrid nanofluid shows better performance during turning of EN-24 steel. So there is a need for optimization of parameters during turning of EN-24 under Al2O3 nanofluids based minimum quantity lubrication, CuO nanofluids based minimum quantity lubrication and Al–CuO hybrid nanofluids based minimum quantity lubrication. The optimization of parameters has been done by response surface methodology. The significance of developed model was identified from analysis of variance. Multi-response optimization was done using desirability function approach. To verify the accuracy of developed models, confirmatory experiments were performed. The experimental results reveal that Al–CuO hybrid nanofluids based minimum quantity lubrication significantly improves surface quality, reduces cutting temperature and cutting forces.


Sign in / Sign up

Export Citation Format

Share Document