Toward integrated design of additive manufacturing through a process development model and multi-objective optimization

2018 ◽  
Vol 96 (9-12) ◽  
pp. 4145-4164 ◽  
Author(s):  
Elnaz Asadollahi-Yazdi ◽  
Julien Gardan ◽  
Pascal Lafon
Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2021 ◽  
Author(s):  
Carlo Alberto Elmi ◽  
Ignazio Vitale ◽  
Hauke Reese ◽  
Antonio Andreini

Abstract The preliminary design of an aero-engine combustor is a multidisciplinary process that involves an extensive and systematic analysis of the design space. Simulation-driven approaches, in which several design configurations are numerically analyzed, may lead to heterogeneous models interacting with each other, sharing miscellaneous information within the process. Iterative and user-defined approaches, moreover, are inefficient when multiple and conflicting requirements are in place. To rely on integrated design methodologies has been demonstrated to be beneficial, especially if adopted in a structured approach to design optimization. In this paper, the application of the Combustor Design System Integration (DSI) to the definition of an optimal combustor preliminary configuration will be presented. Given a combustor baseline design, the multi-objective optimization problem has been defined by targeting an optimal distribution for temperature profiles and patterns at the combustor’s exit. Dilution port characteristics, such as hole number and dimension as well as the axial position of the row have been selected as design variables. To guarantee a water-tight design process while minimizing the user effort, the DSI tools were included in a dedicated framework for driving the optimization tasks. Here, a proper CFD domain for RANS, constituted by the flame tube region extended to the dilution port feeds, was adopted for imposing the air split designed for the combustor. Concerning a “complete” combustor sector, this allows a reduction in the computational effort while still being representative for its aero-thermal behavior. The optimization task was performed using a Response Surface Method (RSM), in which multiple, specific combustor configurations were simulated and the CFD result elaborated to build a meta-model of the combustor itself. Finally, the suitability of the resulting optimized configuration has been evaluated through an “a posteriori” analysis for thermal conditions and emission levels (NOx and CO). A lean combustion concept developed by Avio Aero with the aim of the homonymous EU research project, the NEWAC combustor, has been considered as test case.


2006 ◽  
Vol 39 (13) ◽  
pp. 879-884
Author(s):  
Y. Ma ◽  
S.X. Ding ◽  
P. Zhang ◽  
T. Jeinsch ◽  
M. Schultalbers

2021 ◽  
Author(s):  
Wadea Ameen Qaid ◽  
Abdulrahman Al-Ahmari ◽  
Muneer Khan Mohammed ◽  
Husam Kaid

Abstract Electron-beam melting (EBM) is a rapidly developing metal additive manufacturing (AM) method. It is more effective with complex and customized parts manufactured in low volumes. In contrast to traditional manufacturing it offers reduced lead time and efficient material management. However, this technology has difficulties with regard to the construction of overhang structures. Production of overhangs using EBM without support structures results in distorted objects, and the addition of a support structure increases the material consumption and necessitates post-processing. The objective of this study was to design support structures for metal AM that are easy to remove and consume lower support material without affecting the quality of the part. The design of experiment methodology was incorporated to evaluate the support parameters. The multi-objective optimization minimizing support volume, support removal time along with constrained deformation was performed using multi objective genetic algorithm (MOGA-II). The optimal solution was characterized by a large tooth height (4 mm), large tooth base interval (4 mm), large fragmented separation width (2.5 mm), high beam current (6 mm), and low beam scan speed (1200 mm/s).


2018 ◽  
Vol 51 (11) ◽  
pp. 152-157 ◽  
Author(s):  
Elnaz Asadollahi-Yazdi ◽  
Julien Gardan ◽  
Pascal Lafon

2020 ◽  
Vol 10 (15) ◽  
pp. 5159
Author(s):  
Kasin Ransikarbum ◽  
Rapeepan Pitakaso ◽  
Namhun Kim

Additive manufacturing (AM) became widespread through several organizations due to its benefits in providing design freedom, inventory improvement, cost reduction, and supply chain design. Process planning in AM involving various AM technologies is also complicated and scarce. Thus, this study proposed a decision-support tool that integrates production and distribution planning in AM involving material extrusion (ME), stereolithography (SLA), and selective laser sintering (SLS). A multi-objective optimization approach was used to schedule component batches to a network of AM printers. Next, the analytic hierarchy process (AHP) technique was used to analyze trade-offs among conflicting criteria. The developed model was then demonstrated in a decision-support system environment to enhance practitioners’ applications. Then, the developed model was verified through a case study using automotive and healthcare parts. Finally, an experimental design was conducted to evaluate the complexity of the model and computation time by varying the number of parts, printer types, and distribution locations.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6492
Author(s):  
Shuozhuo Hu ◽  
Zhen Yang ◽  
Jian Li ◽  
Yuanyuan Duan

Organic Rankine cycle (ORC) is considered a promising heat-to-power technology to utilize waste heat and renewable energy, including solar, biomass and geothermal. However, since the thermodynamic, economic and environmental performance is usually conflict, the single objective design could no longer meet the requirements of the ORC system, putting forward urgent requirements for multi-objective optimization, which has attracted increasing attention with lots of papers published. However, due to these different decision variables, optimization objectives and approaches, existing research is significantly different from each other and is difficult to compare without a systematic summary. Therefore, this paper provides an overview of ORC multi-objective research from three perspectives: optimization objective, method and optimization parameters. Based on the classification of different objectives, this work summarizes the involved variables and provides a recommendation for selecting appropriate objectives in different scenarios. For the optimization method, this work compares different approaches and reveals their advantages and disadvantages. Finally, the decision variables are reviewed and classified into four levels. Then the integrated design approach considering “system-process-component-fluid” is proposed and recommended for further development.


Sign in / Sign up

Export Citation Format

Share Document