Changes of cutting performance under different workpiece removal volume during normal speed and high speed milling of compacted graphite iron

2018 ◽  
Vol 100 (9-12) ◽  
pp. 2785-2794 ◽  
Author(s):  
Rui Su ◽  
Chuanzhen Huang ◽  
Longhua Xu ◽  
Bin Zou ◽  
Hanlian Liu ◽  
...  
2017 ◽  
Vol 101 ◽  
pp. 03016 ◽  
Author(s):  
Mohd Azlan Suhaimi ◽  
Kyung-Hee Park ◽  
Safan Sharif ◽  
Dong-Won Kim ◽  
Amrifan Saladin Mohruni

2018 ◽  
Vol 99 (9-12) ◽  
pp. 2149-2157 ◽  
Author(s):  
Mohd Azlan Suhaimi ◽  
Kyung-Hee Park ◽  
Gi-Dong Yang ◽  
Safian Sharif ◽  
Dong-Won Kim

2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3266 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
Rufeng Xu ◽  
...  

The cutting performance of cutting tools in high-speed machining (HSM) is an important factor restricting the machined surface integrity of the workpiece. The HSM of AISI 4340 is carried out by using coated tools with TiN/TiCN/TiAlN multi-coating, TiAlN + TiN coating, TiCN + NbC coating, and AlTiN coating, respectively. The cutting performance evaluation of the coated tools is revealed by the chip morphology, cutting force, cutting temperature, and tool wear. The results show that the serration and shear slip of the chips become more clear with the cutting speed. The lower cutting force and cutting temperature are achieved by the TiN/TiCN/TiAlN multi-coated tool. The flank wear was the dominant wear form in the milling process of AISI 4340. The dominant wear mechanisms of the coated tools include the crater wear, coating chipping, adhesion, abrasion, and diffusion. In general, a TiN/TiCN/TiAlN multi-coated tool is the most suitable tool for high-speed milling of AISI 4340, due to the lower cutting force, the lower cutting temperature, and the high resistance of the element diffusion.


2009 ◽  
Vol 626-627 ◽  
pp. 59-64
Author(s):  
Bin Jiang ◽  
Ling Jiang ◽  
Min Li Zheng ◽  
J. Zhou

According to the theory of axiomatic design, to process function decomposition and grey cluster analysis of high speed milling cutter with indexable inserts, found the design matrix of cutter, and propose the design method of cutter based on high speed milling safety, stability and efficiency. High speed face milling cutter for machining aluminum alloy was developed according to design method and design matrix of cutter, experiment and fuzzy object element evaluation for cutting performance of cutter was accomplished. Results showed that there was not design loop which existed in the development of cutter, design process was simplified effectively, cutting energy of high speed milling cutter using axiomatic design method was dispersed, it held higher safety, cutting stability and efficiency, comprehensive cutting performance met the design requirement of high speed milling cutter.


2016 ◽  
Vol 693 ◽  
pp. 1129-1134
Author(s):  
Zhao Ju Zhu ◽  
Jie Sun ◽  
Lai Xiao Lu

A series of research on the interactions among tool wear, cutting force and cutting vibration were conducted through high speed milling experiment in this paper, which objected the titanium alloy as difficult-to-cut materials. The results showed that the increasing of tool wear led to enlarging the cutting force and cutting vibration; and vice versa, the increasing of cutting force and cutting vibration aggravated the tool wear in the process of machining. Besides, the variation trend of tool wear with cutting was similar to the trend of cutting force, while the variation trend between cutting vibration and tool wear was different. Especially in the sharply cutting tool wear stage, the influence of tool wear on cutting vibration became more complicated.


2019 ◽  
Vol 10 (1) ◽  
pp. 243-254 ◽  
Author(s):  
Longhua Xu ◽  
Chuanzhen Huang ◽  
Rui Su ◽  
Hongtao Zhu ◽  
Hanlian Liu ◽  
...  

Abstract. The studies of tool life and formation of cutting burrs in roughing machining field are core issues in high speed milling of compacted graphite iron (CGI). Changing any one of the cutting parameters like cutting speed or feed rate can result in varied tool life and different height of the cutting burrs. In this work in order to study the relationship between cutting parameters and tool life and height of the cutting burrs, a new differential evolution algorithm based on adaptive neuro fuzzy inference system (DE-ANFIS) as a multi-input and multi-output (MIMO) prediction model is introduced to estimate the tool life and height of the cutting burrs. In this model, the inputs are cutting speed, feed rate and exit angle, and the outputs are tool life and height of the cutting burrs. There are 12 fuzzy rules in DE-ANFIS architecture. Gaussian membership function is adopted during the training process of the DE-ANFIS. The proposed DE-ANFIS model has been compared with PSO-ANFIS, Artificial Neural Network (ANN) and Support Vector Machines (SVM) models. To construct the predictive models, 25 cutting data were obtained through the experiments. Compared with PSO-ANFIS, ANN and SVM models, the results indicate that DE-ANFIS can provide a better prediction accuracy of tool life and height of the cutting burrs, and achieve the required product and productivity. Finally, the analysis of variance (ANOVA) shows that the cutting speed and feed rate have the most effects on the tool life and height of cutting burrs, respectively.


2007 ◽  
Vol 364-366 ◽  
pp. 1026-1031
Author(s):  
Shen Yung Lin ◽  
S.H. Yu ◽  
M.L. Wu

Different materials coated on milling tools (tungsten carbide) such as TiCN, TiAlN, TiN and DLC are integrated in this study for the analysis of cutting performance such as tool wear, surface roughness and noise induced in high-speed machining of mold steels such as NAK80 and SKD61 under different combinations of cutting conditions. The study attempts to find out the advantages and adaptabilities in various coating materials being suitable for which cutting circumferences with specific performance request. High-speed milling experiments of NAK80 and SKD61 mold steels with four materials coating tools were carried out in the laboratory. The tool wear was measured through the toolmaker’s microscope and the roughness of the machined surface was measured by the roughness measuring instruments after each surface layer was removed from the workpiece in the experiment. Besides, the noise-mediator was used to detect cutting noise during each surface layer workpiece removing of high-speed milling process, and the curl chips removed from the workpiece were also collected for the result verifications. Good surface quality and small amount of tool wear can be achieved under the cutting conditions of high-speed revolutions, small feed rate and small depth of cut for four materials coating tools. From the observations of the annealing temperature from the removed chips and the analysis of the cutting noise levels, TiAlN material coating tool has the better tool life and it is suitable for rougher high-speed machining, while DLC material coating tool only has a good surface roughness in shallow cut and hence it is not suitable for high-speed machining of mold steel with excellent cutting performance request.


Sign in / Sign up

Export Citation Format

Share Document