scholarly journals A numerical approach for the modelling of forming limits in hot incremental forming of AZ31 magnesium alloy

Author(s):  
Davide Campanella ◽  
Gianluca Buffa ◽  
Ernesto Lo Valvo ◽  
Livan Fratini

AbstractMagnesium alloys, because of their good specific material strength, can be considered attractive by different industry fields, as the aerospace and the automotive one. However, their use is limited by the poor formability at room temperature. In this research, a numerical approach is proposed in order to determine an analytical expression of material formability in hot incremental forming processes. The numerical model was developed using the commercial software ABAQUS/Explicit. The Johnson-Cook material model was used, and the model was validated through experimental measurements carried out using the ARAMIS system. Different geometries were considered with temperature varying in a range of 25–400 °C and wall angle in a range of 35–60°. An analytical expression of the fracture forming limit, as a function of temperature, was established and finally tested with a different geometry in order to assess the validity.

Author(s):  
Saurabh Rai ◽  
Rakesh Kumar ◽  
Harish Kumar Nirala ◽  
Kevin Francis ◽  
Anupam Agrawal

Abstract Single point incremental forming (SPIF) is more accurate and economical than the conventional forming process for customized products. Majority of the work in SPIF has been carried out on metals. However, polymers are also required to shape. Polycarbonate has wide application in safety glass, bottles, automotive and aircraft industry due to its transparent as well as attractive processing and mechanical properties as compared to other polymeric plastics. In present work, the Polycarbonate (PC) sheet of thickness 1.8 mm is deformed to make a square cup at different angles. Tensile testing is done to analyze the effect of wall angle on the deformed cup. This work illustrates the effect of the SPIF process on material strength in a different directions (vertical and horizontal) of the final deformed product. Tool forces are evaluated using ABAQUS® simulation for SPIF. Numerical simulation approach is used to calculate the fracture energy, which utilizes the force-displacement curve of the specimen and is verified.


Author(s):  
Pavan Kumar ◽  
Puneet Tandon

Commercially pure titanium (CP-Ti) Grade-2 has many applications due to its good weldability, strength, ductility, formability, and superior corrosion resistance. Although, CP-Ti Grade-2 can be formed at room temperature, however, it has lower ductility at room temperature. Therefore, heat treatment or thermal activation is required to increase its ductility and formability. In this paper, the process capabilities of CP-Ti Grade-2 to form the components through warm incremental sheet forming (ISF) has been investigated. To identify the optimal temperature at which CP-Ti Grade-2 sheets can be incrementally formed, straight groove tests were performed experimentally at various temperatures. Two geometries, namely, varying wall angle truncated cone, and constant wall angle truncated cone were used as test cases to evaluate the formability of CP-Ti Grade-2, in terms of limiting wall angle. The formability was also assessed through forming limit diagram obtained by Finite Element (FE) simulation. With forming limit damage criterion, fracture in the formed component was predicted with FE simulation using Abaqus Explicit software. To assess the process capabilities of CP-Ti Grade-2 sheet formed through warm ISF, thickness distribution, forming forces, geometrical accuracy, and surface roughness were analyzed through both FE simulation and experimental work.


Author(s):  
Gautam Kumar ◽  
Kuntal Maji

This article presents formability analysis of aluminium alloy 7075 thin sheets in single point incremental forming (SPIF) through prediction of forming limit curve (FLC) and maximum formable wall angle. Deformation instability method based on tool-sheet contact and non-contact zones in incremental forming was used for the prediction of limit strains for plane strain and equi-biaxial stretching strain path. FLC of the material was also determined experimentally, after measuring limit strains for deformed sheet through groove test for the process. Further, maximum forming wall angle of the material was determined for deformed sheet in a square pyramid shape. The theoretical limit strains predicted by deformation instability approach were compared to the experimental values. Theoretically, calculated limit strains were observed to be higher for plane strain path but approximately close for equi-biaxial strain path compared to experimental limit strains. The maximum formable wall was found to be 55˚ for the material in the process.


Author(s):  
Sandino Torres ◽  
Roberto Ortega ◽  
Pablo Acosta ◽  
Cristian Redroban ◽  
Edisson Calderón

The use of biodegradable materials has a growing field of application due to environmental concerns, however, scientific research on incremental forming using biomaterials is scarce. Thus, this study focuses on the single point incremental forming (SPIF) process applied to a composite sheet that combines a biodegradable thermoplastic matrix (Solanyl) reinforced with natural fibres (flax). The influence of the process parameters on the final geometry is determined, evaluating the effect of the following factors: step depth, wall angle and temperature reached during the process. Additionally, a heated aqueous medium is incorporated which facilitates the formability of the composite sheets. This method is especially useful for materials that have poor formability at room temperature. The benefits of using controlled heat include the reduction of formation forces applied to the plate, improved accuracy due to the reduction of elastic recovery, and the manipulation of the samples remarkably close to the glass transition temperatures. Through this experimental study with the variables analysed, a maximum shaping depth of 310 mm is obtained. These results confirm that the single point shaping used with bioplastic materials is possible and has positive outcomes for incremental forming.


2021 ◽  
Vol 67 (3) ◽  
pp. 123-132
Author(s):  
Sandino Torres ◽  
Roberto Ortega ◽  
Pablo Acosta ◽  
Edisson Calderón

The use of biodegradable materials has a growing field of application due to environmental concerns, however, scientific research on incremental forming using biomaterials is scarce. Thus, this study focuses on the single point incremental forming (SPIF) process applied to a composite sheet that combines a biodegradable thermoplastic matrix (Solanyl) reinforced with natural fibres (flax). The influence of the process parameters on the final geometry is determined, evaluating the effect of the following factors: step depth, wall angle and temperature reached during the process. Additionally, a heated aqueous medium is incorporated which facilitates the formability of the composite sheets. This method is especially useful for materials that have poor formability at room temperature. The benefits of using controlled heat include the reduction of formation forces applied to the plate, improved accuracy due to the reduction of elastic recovery, and the manipulation of the samples remarkably close to the glass transition temperatures. Through this experimental study with the variables analysed, a maximum shaping depth of 310 mm is obtained. These results confirm that the single point shaping used with bioplastic materials is possible and has positive outcomes for incremental forming.


2017 ◽  
Vol 13 (10) ◽  
pp. 5905-5913
Author(s):  
S. Saravanan ◽  
P.Senthil Kumar ◽  
T. Palanisamy ◽  
M. Ravichandran ◽  
V. Anandakrishnan ◽  
...  

AA6063-TiC composites have several weight percentages up to 9 wt. % were fabricated by using stir casting route method. The effects of the weight percentage of TiC particles on the microstructures and corrosion behavior of AA6063-TiC composites were studied. The results revealed that the AA6063-TiC composites exhibited higher density than the AA6063 matrix. The accelerated corrosion tests of AA6063-TiC composites in 3.5 wt. % NaCl aqueous solution at room temperature, the AA6063-TiC composites have better corrosion resistance than the AA6063 matrix. Increasing the weight percentage of the TiC particles to reduces the corrosion rate of the AA6063-TiC composites. In this process corrosion rate of 0.4402 mm/year for AA6063 matrix, 0.3891 mm/year for 3 wt. % , 0.3568 mm/year for 6 wt. % and 0.3062 mm/year for 9 wt. % of TiC particles respectively. The poor corrosion resistance of the composites can be attributed to the galvanic effects between the AA6063 matrix and TiC reinforcement.


2020 ◽  
Vol 27 ◽  
pp. 1-5
Author(s):  
David Vokoun ◽  
Jan Maňák ◽  
Karel Tesař ◽  
Stanislav Habr

The thermomechanical processing by equal-channel angular pressing (ECAP) is used for certain metals and alloys in order to make their structure fine and to increase material strength. In the previous study done at our institute, grade 2 titanium was successfully processed using four consecutive route A passes via a 90 ° ECAP die with high backpressure at room temperature. Orientation dependence of compressive and tensile loading of ECAPed titanium samples was demonstrated at macro-scale. However, scarce attention has been paid so far to the mechanical behavior of ECAPed titanium samples at micro-scale. In the present study, compression experiments on titanium micropillars, fabricated using focused ion beam, are carried out for two main directions in respect to preceding ECAP pressing (insert and extrusion directions). The purpose of this study is to discuss the orientation dependence of mechanical response during compression of the as-ECAPed titanium micro-pillars.


Author(s):  
Shalin Marathe ◽  
Harit Raval

Abstract The automobile, transportation and shipbuilding industries are aiming at fuel efficient products. In order to enhance the fuel efficiency, the overall weight of the product should be brought down. This requirement has increased the use of material like aluminium and its alloys. But, it is difficult to weld aluminium using conventional welding processes. This problem can be solved by inventions like friction stir welding (FSW) process. During fabrication of product, FSW joints are subjected to many different processes and forming is one of them. During conventional forming, the formability of the welded blanks is found to be lower than the formability of the parent blank involved in it. One of the major reasons for reduction in formability is the global deformation provided on the blank during forming process. In order to improve the formability of homogeneous blanks, Single Point Incremental Forming (SPIF) is found to be giving excellent results. So, in this work formability of the welded blanks is investigated during the SPIF process. Friction Stir Welding is used to fabricate the welded blanks using AA 6061 T6 as base material. Welded blanks are formed in to truncated cone through SPIF process. CNC milling machine is used as SPIF machine tool to perform the experimental work. In order to avoid direct contact between weld seam and forming tool, a dummy sheet was used between them. As responses forming limit curve (FLC), surface roughness, and thinning are investigated. It was found that use of dummy sheet leads to improve the surface finish of the formed blank. The formability of the blank was found less in comparison to the parent metal involved in it. Uneven distribution of mechanical properties in the welded blanks leads to decrease the formability of the welded blanks.


2020 ◽  
Vol 56 ◽  
pp. 697-706 ◽  
Author(s):  
Song Wu ◽  
Yunwu Ma ◽  
Leitao Gao ◽  
Yixi Zhao ◽  
Sherif Rashed ◽  
...  

2011 ◽  
Vol 03 (02) ◽  
pp. 259-278 ◽  
Author(s):  
YI HAN ◽  
WEI HONG ◽  
LEANN FAIDLEY

Composed of a soft polymer matrix and magnetic filler particles, ferrogel is a smart material responsive to magnetic fields. Due to the viscoelasticity of the matrix, the behaviors of ferrogel are usually rate-dependent. Very few models with coupled magnetic field and viscoelasticity exist in the literature, and even fewer are capable of reliable predictions. Based on the principles of non-equilibrium thermodynamics, a field theory is developed to describe the magneto-viscoelastic property of ferrogel. The theory provides a guideline for experimental characterizations and structural designs of ferrogel-based devices. A specific material model is then selected and the theory is implemented in a finite element code. Through numerical examples, the responses of a ferrogel in uniform and non-uniform magnetic fields are analyzed. The dynamic response of a ferrogel to cyclic magnetic fields is also studied, and the prediction agrees with our experimental results. In the reversible limit, our theory recovers existing models for elastic ferrogel, and is capable of capturing some instability phenomena.


Sign in / Sign up

Export Citation Format

Share Document