Process capabilities of commercially pure titanium grade 2 formed through warm incremental sheet forming

Author(s):  
Pavan Kumar ◽  
Puneet Tandon

Commercially pure titanium (CP-Ti) Grade-2 has many applications due to its good weldability, strength, ductility, formability, and superior corrosion resistance. Although, CP-Ti Grade-2 can be formed at room temperature, however, it has lower ductility at room temperature. Therefore, heat treatment or thermal activation is required to increase its ductility and formability. In this paper, the process capabilities of CP-Ti Grade-2 to form the components through warm incremental sheet forming (ISF) has been investigated. To identify the optimal temperature at which CP-Ti Grade-2 sheets can be incrementally formed, straight groove tests were performed experimentally at various temperatures. Two geometries, namely, varying wall angle truncated cone, and constant wall angle truncated cone were used as test cases to evaluate the formability of CP-Ti Grade-2, in terms of limiting wall angle. The formability was also assessed through forming limit diagram obtained by Finite Element (FE) simulation. With forming limit damage criterion, fracture in the formed component was predicted with FE simulation using Abaqus Explicit software. To assess the process capabilities of CP-Ti Grade-2 sheet formed through warm ISF, thickness distribution, forming forces, geometrical accuracy, and surface roughness were analyzed through both FE simulation and experimental work.

Author(s):  
G. Hussain ◽  
L. Gao ◽  
Wang Hui ◽  
N. U. Dar

In the present study, a basic comparison between the cold formability of a commercially-pure Titanium (CP Ti) sheet in the single-point incremental forming (SPIF) and stamping processes is presented. An attempt was made to evaluate the SPIF formability by employing two tests. In the first test, parts having continuously varying wall angles were formed. While in the second test, parts having fixed wall angles were formed. The stamping formability was determined by conducting the limiting dome height (LDH) test. It is concluded that the forming limit curve (FLC) in SPIF is located much higher than the stamping FLC, even higher than the fracture limit curve in stamping. Moreover, the SPIF formability shows dependence on the test employed.


2010 ◽  
Vol 667-669 ◽  
pp. 779-784
Author(s):  
Xi Rong Yang ◽  
Xi Cheng Zhao ◽  
Xiao Yan Liu

A series of experiments were conducted to evaluate the feasibility that commercially pure titanium (CP-Ti) was pressed for multiple passes by equal channel angular pressing (ECAP) at room temperature. Samples of CP-Ti were processed at room temperature using the dies with channel angles of 90° and 120°, respectively. First, each billet was processed 4 passes by ECAP using a die with an angle of 120° and a ram speed of 0.5mm s-1. And in order to eliminate residual stress, immediate annealing at 473 K for an hour was conducted between two adjacent passes. Second, CP-Ti was successfully processed by ECAP for up to 8 passes using the same die and a ram speed of 2 mm s-1 by controlling the flow of metal. Finally, CP-Ti was successfully achieved using a conventional die with an angle of 90° between the channels at room temperature. Each billet was processed for two passes with a ram speed of 26 mm s-1. These experiments show that CP-Ti may be processed by ECAP at room temperature and special attention was paid on improvements in the yield stress, ultimate strength and micro-hardness of ECAPed-Ti that are slightly higher than the improvements attained after pressing at elevated temperatures.


2012 ◽  
Vol 548 ◽  
pp. 174-178 ◽  
Author(s):  
Chong Yang Gao ◽  
Wei Ran Lu

By using a dislocation-based plastic constitutive model for hcp metals developed by us recently, the dynamic thermomechanical response of an important industrial material, commercially pure titanium (CP-Ti), was described at different temperatures and strain rates. The constitutive parameters of the material are determined by an efficient optimization method for a globally optimal solution. The model can well predict the dynamic response of CP-Ti by the comparison with experimental data and the Nemat-Nasser-Guo model.


Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


2005 ◽  
Vol 19 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Wagner Sotero Fragoso ◽  
Guilherme Elias Pessanha Henriques ◽  
Edwin Fernando Ruiz Contreras ◽  
Marcelo Ferraz Mesquita

Commercially pure titanium (CP Ti) has been widely applied to fabricate cast devices because of its favorable properties. However, the mold temperature recommended for the manufacture of casts has been considered relatively low, causing inadequate castability and poor marginal fit of cast crowns. This study evaluated and compared the influence of mold temperature (430°C - as control, 550°C, 670°C) on the marginal discrepancies of cast CP Ti crowns. Eight bovine teeth were prepared on a mechanical grinding device and impressions were used to duplicate each tooth and produce eight master dies. Twenty-four crowns were fabricated using CP Ti in three different groups of mold temperature (n = 8): 430°C (as control), 550°C and 670°C. The gap between the crown and the bovine tooth was measured at 50 X magnification with a traveling microscope. The marginal fit values of the cast CP Ti crowns were submitted to the Kruskal-Wallis test (p = 0.03). The 550°C group (95.0 µm) showed significantly better marginal fit than the crowns of the 430°C group (203.4 µm) and 670°C group (213.8 µm). Better marginal fit for cast CP Ti crowns was observed with the mold temperature of 550°C, differing from the 430°C recommended by the manufacturer.


2010 ◽  
Vol 654-656 ◽  
pp. 2172-2175
Author(s):  
Kyosuke Ueda ◽  
Hajime Suto ◽  
Kaori Nakaie ◽  
Takayuki Narushima

The surface modification of commercially pure titanium (CP Ti) by pack cementation treatment at 973 K using tetracalcium phosphate (Ca4(PO4)2O, TTCP) slurry was investigated. An HAp phase and a CaTiO3 phase were observed on the reaction layer of the CP Ti substrate after pack cementation treatment at 973 K for 86.4 ks. TTCP powder decomposed to HAp and CaO, and CaO reacted with TiO2 to form CaTiO3. The reaction layer on the CP Ti substrate consisted of inner and outer layers and the particles were in the outer reaction layer. The pores observed on the reaction layer were formed by the detachment of particles from the outer layer. The bonding strength of the reaction layer was 68.1 MPa. Apatite completely covered the surface of the pack-cementation-treated CP Ti after immersion in Kokubo solution for 21.6 ks; such rapid apatite formation suggests that pack cementation treatment improves the biocompatibility of titanium.


2018 ◽  
Vol 53 (9) ◽  
pp. 6872-6892 ◽  
Author(s):  
S. Khayatzadeh ◽  
M. J. Thomas ◽  
Y. Millet ◽  
S. Rahimi

2021 ◽  
Vol 15 (1) ◽  
pp. 7662-7670
Author(s):  
N. Ali ◽  
M.S. Mustapa ◽  
T. Sujitno ◽  
T.E. Putra ◽  
Husaini .

This research aims to study the behavior of monotonic and cyclic plastic deformation on commercially pure titanium which has undergone surface treatment using the nitrogen ion implantation method. The doses of 2.0×1017 ions/cm2 and the energy of 100 keV were used to implant the nitrogen ions into the CpTi. Monotonic properties tests were performed in a laboratory air and at room temperature using ASTM E8 standard specimens. Fatigue and corrosion fatigue tests were conducted in a laboratory  air and in artificial saline solutions, at room temperature using ASTM 1801-97 specimens. Tensile tests were carried out with constant displacement rate and fatigue tests were carried under fully-reversed with stress-controlled conditions with stress amplitudes 230, 240, 250, 260, 270 and 280 MPa. The results showed the material properties of monotonic behavior for CpTi and Nii-Ti; tensile strength (σu) of 497 and 539 MPa and for 0.2% offset yield strength (σy) of 385 and 440 MPa, respectively and of cyclic behavior; cyclic strength coefficient (k’) of 568.41 and 818.64 and cyclic strain hardening exponent (n’) of 0.176 and 0.215, respectively. This study has succeeded in producing useful new material properties that will contribute to the field of material science and engineering.


Author(s):  
F Reshadi ◽  
S Khorasani ◽  
G Faraji

This study investigated the surface characteristics of ultrafine-grain commercially pure titanium (UFG CP-Ti) substrates produced by equal channel angular pressing (ECAP), compared with those of coarse-grain commercially pure titanium (CG CP-Ti) and Ti–6Al–4V (Ti-64) substrates. All Ti surfaces were sandblasted and acid-etched (SLA-treated) to produce micro-rough surfaces. Tensile and microhardness tests were carried out to measure the mechanical properties of fabricated samples. Then the surface characteristics of samples including contact angle measurements, surface morphology and in vitro cell response were evaluated after polishing, sandblasting and acid etching procedures. The results showed that after applying four passes of ECAP, the average grain size of microstructure decreased from 25 µm to 170 nm, while the ultimate tensile strength increased from 545 ± 24 MPa to 971 ± 38 MPa. Investigation of surface morphologies carried out by scanning electron microscopy indicated that ECAP-processed substrate exhibits nano-topography compared with CG CP-Ti and Ti-64 substrates after applying SLA process. In addition, the contact angle of SLA-treated CG CP-Ti and UFG CP-Ti substrates decreased from 68.3° to 9.5° and 51.9° to 7.4°, respectively, indicating a significant improvement of surface wettability. The morphologies of MG63 cells cultured on the developed surfaces proved the potential superior osteoblast cell compatibility of the micro-roughened surface made of UFG CP-Ti substrates over CG CP-Ti and Ti-64 substrates.


Sign in / Sign up

Export Citation Format

Share Document