scholarly journals A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters

2019 ◽  
Vol 93 (10) ◽  
pp. 1943-1961
Author(s):  
Hadi Amin ◽  
Lars E. Sjöberg ◽  
Mohammad Bagherbandi

Abstract The geoid, according to the classical Gauss–Listing definition, is, among infinite equipotential surfaces of the Earth’s gravity field, the equipotential surface that in a least squares sense best fits the undisturbed mean sea level. This equipotential surface, except for its zero-degree harmonic, can be characterized using the Earth’s global gravity models (GGM). Although, nowadays, satellite altimetry technique provides the absolute geoid height over oceans that can be used to calibrate the unknown zero-degree harmonic of the gravimetric geoid models, this technique cannot be utilized to estimate the geometric parameters of the mean Earth ellipsoid (MEE). The main objective of this study is to perform a joint estimation of W0, which defines the zero datum of vertical coordinates, and the MEE parameters relying on a new approach and on the newest gravity field, mean sea surface and mean dynamic topography models. As our approach utilizes both satellite altimetry observations and a GGM model, we consider different aspects of the input data to evaluate the sensitivity of our estimations to the input data. Unlike previous studies, our results show that it is not sufficient to use only the satellite-component of a quasi-stationary GGM to estimate W0. In addition, our results confirm a high sensitivity of the applied approach to the altimetry-based geoid heights, i.e., mean sea surface and mean dynamic topography models. Moreover, as W0 should be considered a quasi-stationary parameter, we quantify the effect of time-dependent Earth’s gravity field changes as well as the time-dependent sea level changes on the estimation of W0. Our computations resulted in the geoid potential W0 = 62636848.102 ± 0.004 m2 s−2 and the semi-major and minor axes of the MEE, a = 6378137.678 ± 0.0003 m and b = 6356752.964 ± 0.0005 m, which are 0.678 and 0.650 m larger than those axes of GRS80 reference ellipsoid, respectively. Moreover, a new estimation for the geocentric gravitational constant was obtained as GM = (398600460.55 ± 0.03) × 106 m3 s−2.

2020 ◽  
Author(s):  
Hadi Amin ◽  
Lars E. Sjöberg ◽  
Mohammad Bagherbandi

<p>According to the classical Gauss–Listing definition, the geoid is the equipotential surface of the Earth’s gravity field that in a least-squares sense best fits the undisturbed mean sea level. This equipotential surface, except for its zero-degree harmonic, can be characterized using the Earth’s Global Gravity Models (GGM). Although nowadays, the satellite altimetry technique provides the absolute geoid height over oceans that can be used to calibrate the unknown zero-degree harmonic of the gravimetric geoid models, this technique cannot be utilized to estimate the geometric parameters of the Mean Earth Ellipsoid (MEE). In this study, we perform joint estimation of W<sub>0</sub>, which defines the zero datum of vertical coordinates, and the MEE parameters relying on a new approach and on the newest gravity field, mean sea surface, and mean dynamic topography models. As our approach utilizes both satellite altimetry observations and a GGM model, we consider different aspects of the input data to evaluate the sensitivity of our estimations to the input data. Unlike previous studies, our results show that it is not sufficient to use only the satellite-component of a quasi-stationary GGM to estimate W<sub>0</sub>. In addition, our results confirm a high sensitivity of the applied approach to the altimetry-based geoid heights, i.e. mean sea surface and mean dynamic topography models. Moreover, as W<sub>0</sub> should be considered a quasi-stationary parameter, we quantify the effect of time-dependent Earth’s gravity field changes as well as the time-dependent sea-level changes on the estimation of W<sub>0</sub>. Our computations resulted in the geoid potential W<sub>0 </sub>= 62636848.102 ± 0.004 m<sup>2</sup>s<sup>-2</sup> and the semi-major and –minor axes of the MEE, a = 6378137.678 ± 0.0003 m and b = 6356752.964 ± 0.0005 m, which are 0.678 and 0.650 m larger than those axes of the GRS80 reference ellipsoid, respectively. Moreover, a new estimation for the geocentric gravitational constant was obtained as GM = (398600460.55 ± 0.03) × 10<sup>6</sup> m<sup>3</sup>s<sup>-2</sup>.</p>


Author(s):  
Chí Công Dương ◽  
Minh Hòa Hà ◽  
Tuấn Anh Nguyễn ◽  
Thanh An Lê ◽  
Trung Thành Hoàng

Trên thế giới các kết quả đo cao từ vệ tinh (Đo cao vệ tinh: Satellite Altimetry) như bề mặt biển tự nhiên biển (MSS – Mean Sea Surface), mặt địa hình biển động lực trung bình so với Geoid (MDT – Mean Dynamic Topography), xác định trường trọng lực và Geoid trên biển v.v đã được ứng dụng nhiều trong nghiên cứu về Hải dương học, Khí tượng – Hải văn biển, Trắc địa và Địa vật lý. Ở Việt Nam việc nghiên cứu sử dụng mô hình MSS, MDT trong Trắc địa bản đồ cũng đã được một số tác giả khởi xướng từ vài năm trở lại đây. Trong bài báo này chúng tôi thử nghiệm sử dụng mô hình DNSC08MDT để tính trị đo sâu. Mô hình này được cung cấp chính thức tại thời điểm nghiên cứu, sau này đã có thêm các mô hình DTU10, DTU12 được cải tiến hơn (Dương Chí Công và nnk, 2015). Tại khu vực Bắc Trung Bộ (từ vĩ tuyến ~15° đến ~20°, từ bờ biển đến kinh độ 116°) với mô hình DNSC08MDT sau khi cải chính (về Geoid cục bộ Hòn Dấu trong hệ triều 0 và độ lệch hệ thống so với các trạm nghiệm triều) đã tính được trị đo sâu cho 5 mảnh bản đồ địa hình đáy biển tỷ lệ 1/50.000. Độ chính xác trung bình đạt ±0.6m là có thể chấp nhận được đối với bản đồ địa hình đáy biển tỷ lệ 1/50.000 khu vực xa bờ (từ khoảng 20 km trở ra).


2021 ◽  
Vol 9 ◽  
Author(s):  
Mohammad Hanif Hamden ◽  
Ami Hassan Md Din ◽  
Dudy Darmawan Wijaya ◽  
Mohd Yunus Mohd Yusoff ◽  
Muhammad Faiz Pa’suya

Contemporary Universiti Teknologi Malaysia 2020 Mean Sea Surface (UTM20 MSS) and Mean Dynamic Topography (UTM20 MDT) models around Malaysian seas are introduced in this study. These regional models are computed via scrutinizing along-track sea surface height (SSH) points and specific interpolation methods. A 1.5-min resolution of UTM20 MSS is established by integrating 27 years of along-track multi-mission satellite altimetry covering 1993–2019 and considering the 19-year moving average technique. The Exact Repeat Mission (ERM) collinear analysis, reduction of sea level variability of geodetic mission (GM) data, crossover adjustment, and data gridding are presented as part of the MSS computation. The UTM20 MDT is derived using a pointwise approach from the differences between UTM20 MSS and the local gravimetric geoid. UTM20 MSS and MDT reliability are validated with the latest Technical University of Denmark (DTU) and Collecte Localisation Services (CLS) models along with coastal tide gauges. The findings presented that the UTM20, CLS15, and DTU18 MSS models exhibit good agreement. Besides, UTM20 MDT is also in good agreement with CLS18 and DTU15 MDT models with an accuracy of 5.1 and 5.5 cm, respectively. The results also indicate that UTM20 MDT statistically achieves better accuracy than global models compared to tide gauges. Meanwhile, the UTM20 MSS accuracy is within 7.5 cm. These outcomes prove that UTM20 MSS and MDT models yield significant improvement compared to the previous regional models developed by UTM, denoted as MSS1 and MSS2 in this study.


Author(s):  
N. A. Z. Yahaya ◽  
T. A. Musa ◽  
K. M. Omar ◽  
A. H. M. Din ◽  
A. H. Omar ◽  
...  

The advancement of satellite altimeter technology has generated many evolutions to oceanographic and geophysical studies. A multi-mission satellite altimeter consists with TOPEX, Jason-1 and Jason-2, ERS-2, Envisat-1, CryoSat-2 and Saral are extracted in this study and has been processed using Radar Altimeter Database System (RADS) for the period of January 2005 to December 2015 to produce the sea surface height (hereinafter referred to SSH). The monthly climatology data from SSH is generated and averaged to understand the variation of SSH during monsoon season. Then, SSH data are required to determine the localised and new mean sea surface (MSS). The differences between Localised MSS and DTU13 MSS Global Model is plotted with root mean square error value is 2.217 metres. The localised MSS is important towards several applications for instance, as a reference for sea level variation, bathymetry prediction and derivation of mean dynamic topography.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Ioannis Mintourakis

AbstractWhen processing satellite altimetry data for Mean Sea Surface (MSS) modelling in coastal environments many problems arise. The degradation of the accuracy of the Sea Surface Height (SSH) observations close to the coastline and the usually irregular pattern and variability of the sea surface topography are the two dominant factors which have to be addressed. In the present paper, we study the statistical behavior of the SSH observations in relation to the range from the coastline for many satellite altimetry missions and we make an effort to minimize the effects of the ocean variability. Based on the above concepts we present a process strategy for the homogenization of multi satellite altimetry data that takes advantage ofweighted SSH observations and applies high degree polynomials for the adjustment and their uniffcation at a common epoch. At each step we present the contribution of each concept to MSS modelling and then we develop a MSS, a marine geoid model and a grid of gravity Free Air Anomalies (FAA) for the area under study. Finally, we evaluate the accuracy of the resulting models by comparisons to state of the art global models and other available data such as GPS/leveling points, marine GPS SSH’s and marine gravity FAA’s, in order to investigate any progress achieved by the presented strategy


Ocean Science ◽  
2015 ◽  
Vol 11 (5) ◽  
pp. 829-837 ◽  
Author(s):  
C. Yan ◽  
J. Zhu ◽  
C. A. S. Tanajura

Abstract. An ocean data assimilation system was developed for the Pacific–Indian oceans with the aim of assimilating altimetry data, sea surface temperature, and in situ measurements from Argo (Array for Real-time Geostrophic Oceanography), XBT (expendable bathythermographs), CTD (conductivity temperature depth), and TAO (Tropical Atmosphere Ocean). The altimetry data assimilation requires the addition of the mean dynamic topography to the altimetric sea level anomaly to match the model sea surface height. The mean dynamic topography is usually computed from the model long-term mean sea surface height, and is also available from gravimetric satellite data. In this study, the impact of different mean dynamic topographies on the sea level anomaly assimilation is examined. Results show that impacts of the mean dynamic topography cannot be neglected. The mean dynamic topography from the model long-term mean sea surface height without assimilating in situ observations results in worsened subsurface temperature and salinity estimates. Even if all available observations including in situ measurements, sea surface temperature measurements, and altimetry data are assimilated, the estimates are still not improved. This proves the significant impact of the MDT (mean dynamic topography) on the analysis system, as the other types of observations do not compensate for the shortcoming due to the altimetry data assimilation. The gravimeter-based mean dynamic topography results in a good estimate compared with that of the experiment without assimilation. The mean dynamic topography computed from the model long-term mean sea surface height after assimilating in situ observations presents better results.


2015 ◽  
Vol 220-221 ◽  
pp. 257-263
Author(s):  
Petras Petroškevičius ◽  
Rosita Birvydiene ◽  
Darius Popovas

The Earth’s gravity field tends to change due to various reasons. These are diverse processes occurring inside the Earth or changes initiated by human activity. The increasing accuracy of measurements has enabled to take into consideration fluctuations in the gravity field. The article presents research study on the effect of gravity potential describing variations in the gravity field affecting gravity field elements related to the performed measurements. Due to the effect of the disturbing potential, a change in gravity and the deviation of vertical and equipotential surface deformation have been determined. The paper has analyzed the disturbing effect of the material point or homogeneous sphere and has specified the possibilities of assessing the disturbing effect of any form of the homogeneous body. Based on the tidal potential induced by the celestial body, the disturbing effect of the Moon and Sun onto the Earth’s gravity field has been assessed. The carried out research indicates that the range of deformation changes in the equipotential surface of the Earth’s gravity field induced by the effect of the Moon is equal to 0.4824 m, whereas that of the Sun makes 0.1861 m. The conducted studies prove that, due to the effect of the Moon, the direction of the vertical, in terms of the Earth’s surface, tends to change up to 0.0541", and as a result of the Sun’s effect it could reach 0.0204". Having assessed the Lunisolar effect in the first order vertical network measurements in Lithuania, in a polygon with the perimeter of 451 km, it has been determined that the closing error of normal height difference has decreased by the factor of 1.3.


Sign in / Sign up

Export Citation Format

Share Document