Gut microbiota composition and bone mineral loss—epidemiologic evidence from individuals in Wuhan, China

2019 ◽  
Vol 30 (5) ◽  
pp. 1003-1013 ◽  
Author(s):  
C. Li ◽  
Q. Huang ◽  
R. Yang ◽  
Y. Dai ◽  
Y. Zeng ◽  
...  
Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 348 ◽  
Author(s):  
Pengpeng Hua ◽  
Yu Xiong ◽  
Zhiying Yu ◽  
Bin Liu ◽  
Lina Zhao

In our current investigation, we evaluated the effect of Chlorella pyrenoidosa protein hydrolysate (CPPH) and Chlorella pyrenoidosa protein hydrolysate-calcium chelate (CPPH-Ca) on calcium absorption and gut microbiota composition, as well as their in vivo regulatory mechanism in SD rats fed low-calcium diets. Potent major compounds in CPPH were characterized by HPLC-MS/MS, and the calcium-binding mechanism was investigated through ultraviolet and infrared spectroscopy. Using high-throughput next-generation 16S rRNA gene sequencing, we analyzed the composition of gut microbiota in rats. Our study showed that HCPPH-Ca increased the levels of body weight gain, serum Ca, bone activity, bone mineral density (BMD) and bone mineral content (BMC), while decreased serum alkaline phosphatase (ALP) and inhibited the morphological changes of bone. HCPPH-Ca up-regulated the gene expressions of transient receptor potential cation V5 (TRPV5), TRPV6, calcium-binding protein-D9k (CaBP-D9k) and a calcium pump (plasma membrane Ca-ATPase, PMCA1b). It also improved the abundances of Firmicutes and Lactobacillus. Bifidobacterium and Sutterella were both positively correlated with calcium absorption. Collectively, these findings illustrate the potential of HCPPH-Ca as an effective calcium supplement.


2019 ◽  
Author(s):  
Robin Mesnage ◽  
Franziska Grundler ◽  
Andreas Schwiertz ◽  
Yvon Le Maho ◽  
Françoise Wilhelmi de Toledo

2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander Koliada ◽  
Vladislav Moseiko ◽  
Mariana Romanenko ◽  
Oleh Lushchak ◽  
Nadiia Kryzhanovska ◽  
...  

Abstract Background Evidence was previously provided for sex-related differences in the human gut microbiota composition, and sex-specific discrepancy in hormonal profiles was proposed as a main determinant of these differences. On the basis of these findings, the assumption was made on the role of microbiota in the sexual dimorphism of human diseases. To date, sex differences in fecal microbiota were demonstrated primarily at lower taxonomic levels, whereas phylum-level differences between sexes were reported in few studies only. In the present population-based cross-sectional research, sex differences in the phylum-level human gut microbiota composition were identified in a large (total n = 2301) sample of relatively healthy individuals from Ukraine. Results Relative abundances of Firmicutes and Actinobacteria, as determined by qRT-PCR, were found to be significantly increased, while that of Bacteroidetes was significantly decreased in females compared to males. The Firmicutes to Bacteroidetes (F/B) ratio was significantly increased in females compared to males. Females had 31 % higher odds of having F/B ratio more than 1 than males. This trend was evident in all age groups. The difference between sexes was even more pronounced in the elder individuals (50+): in this age group, female participants had 56 % higher odds of having F/B ratio > 1 than the male ones. Conclusions In conclusion, sex-specific differences in the phylum-level intestinal microbiota composition were observed in the Ukraine population. The F/B ratio was significantly increased in females compared to males. Further investigation is needed to draw strong conclusions regarding the mechanistic basis for sex-specific differences in the gut microbiota composition and regarding the role of these differences in the initiation and progression of human chronic diseases.


Sign in / Sign up

Export Citation Format

Share Document