Comparative analysis of the gut microbiota composition in the Cln1R151X and Cln2R207X mouse models of Batten disease and in three wild-type mouse strains

Author(s):  
Camille Parker ◽  
Jing Zhao ◽  
David A. Pearce ◽  
Attila D. Kovács
2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Mei Wang ◽  
Brooke Smith ◽  
Brock Adams ◽  
Miller Tran ◽  
Ryan Dilger ◽  
...  

Abstract Objectives Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea in human infants and young farm animals. Osteopontin (OPN), a glycoprotein present in high concentration in human milk, has immunomodulatory functions, which could indirectly impact the microbiota. Furthermore, a previous study has shown fecal microbiota composition differs between wild-type and OPN knockout mice. Herein, the effects of OPN-enriched algae on the gut microbiota composition and volatile fatty acid (VFA) concentrations of ETEC-infected piglets were assessed. Methods Naturally-farrowed piglets were sow-reared for 21 days and then randomized to two weaning diets: WT (formula + 1% wild-type algae) or OPN (formula + 1% OPN-enriched algae). On postnatal day (PND) 31, all piglets were infected orally with a live culture of ETEC (1010 colony-forming unit/3 mL dose) daily for three consecutive days. On PND 41, ascending colon (AC) contents were collected. Gut microbiota was assessed by sequencing V3-V4 regions of 16S rRNA gene and VFAs were determined by gas chromatography. Alpha-diversity and VFAs were analyzed using PROC MIXED procedure of SAS. Beta-diversity was evaluated by permutational multivariate analysis of variance (PERMANOVA) and differential abundance analysis on the bacterial genera was performed using DESeq2 package of R. Results Shannon indices were lower in the AC contents of OPN piglets compared to WT piglets. The overall colonic microbiota of OPN piglets differed from that of WT piglets (PERMANOVA P = 0.015). At genus level, OPN-enriched algae increased the abundance of Streptococcus, decreased the abundances of Sutterella, Candidatus Soleaferrea, dga-11 gut group, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-010, unculturedRuminococcaceae, Prevotella 2 and 7 compared to piglets consuming wild-type algae (P < 0. 05). OPN piglets also had higher (P < 0.05) concentrations of acetate, propionate, butyrate and valerate compared to WT. Conclusions In ETEC infected piglets, 1% OPN-enriched algae decreased alpha-diversity and modulated the microbiota composition and VFA profiles compared to 1% WT algae. Other studies have shown that OPN inhibits biofilm formation in vitro, but future research is needed to assess in vivo microbiome-modulation mechanisms. Funding Sources Triton Algae Innovations.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Jessica C. Ralston ◽  
Kathleen A.J. Mitchelson ◽  
Gina M. Lynch ◽  
Tam T.T. Tran ◽  
Conall R. Strain ◽  
...  

AbstractReduced inflammatory signaling (IL-1RI-/-) alters metabolic responses to dietary challenges (1). Inflammasome deficiency (e.g. IL-18-/-, Asc-/-) can modify gut microbiota concomitant with hepatosteatosis; an effect that was transferable to wild-type (WT) mice by co-housing (2). Taken together, this evidence suggests that links between diet, microbiota and IL-1RI-signaling can influence metabolic health. Our aim was to determine whether IL-1RI-mediated signaling interacted with the gut microbiome to impact metabolic tissue functionality in a diet-specific fashion. Male WT (C57BL/J6) and IL-1RI-/- mice were fed either high-fat diet (HFD; 45% kcal) or low-fat diet (LFD; 10% kcal) for 24 weeks and were housed i) separately by genotype or ii) with genotypes co-housed together (i.e. isolated vs shared microbial environment; n = 8–10 mice per group). Glucose tolerance and insulin secretion response (1.5 g/kg i.p.), gut microbiota composition and caecal short-chain fatty acids (SCFA) were assessed. Liver and adipose tissue were harvested and examined for triacylglycerol (TAG) formation, cholesterol and metabolic markers (Fasn, Cpt1α, Pparg, Scd1, Dgat1/2), using histology, gas-chromatography and RT-PCR, respectively. Statistical analysis included 1-way or 2-way ANOVA, where appropriate, with Bonferroni post-hoc correction. Co-housing significantly affected gut microbiota composition, illustrated by clustering in PCoA (unweighted UniFrac distance) of co-housed mice but not their single-housed counterparts, on both HFD and LFD. The taxa driving these differences were primarily from Lachnospiraceae and Ruminococcaceae families. Single-housed WT had lower hepatic weight, TAG, cholesterol levels and Fasn despite HFD, an effect lost in their co-housed counterparts, who aligned more to IL-1RI-/- hepatic lipid status. Hepatic Cpt1α was lowest in co-housed WT. Adipose from IL-1RI-/- groups on HFD displayed increased adipocyte size and reduced adipocyte number compared to WT groups, but greater lipogenic potential (Pparg, Scd1, Dgat2) alongside a blunted IL-6 response to pro-inflammatory stimuli (~32%, P = 0.025). Whilst caecal SCFA concentrations were not different between groups, single-housed IL-1RI-/- adipocytes showed greatest sensitivity to SCFA-induced lipogenesis. Interestingly, differences in tissue functionality and gut microbiome occurred despite unaltered glucose tolerance; although there was a trend for phenotypic transfer of body weight via co-housing. For all endpoints examined, similar genotype/co-housing effects were observed for both HFD and LFD with the greatest impacts seen in HFD-fed mice. In conclusion, while the gut microbiome may be an important consideration in dietary interventions, these results question the magnitude of its impact in relation to the IL-1RI-dependent immunometabolism-glucose homeostasis axis.


2017 ◽  
Vol 8 ◽  
Author(s):  
Yimeng Li ◽  
Xiaolong Hu ◽  
Shuang Yang ◽  
Juntong Zhou ◽  
Tianxiang Zhang ◽  
...  

2017 ◽  
Vol 65 (2) ◽  
pp. 327-337 ◽  
Author(s):  
Wei-Wei Dong ◽  
Fang-Ling Xuan ◽  
Fei-Liang Zhong ◽  
Jun Jiang ◽  
Songquan Wu ◽  
...  

2016 ◽  
Vol 62 (2) ◽  
pp. 396-406 ◽  
Author(s):  
Mitsuaki Ishioka ◽  
Kouichi Miura ◽  
Shinichiro Minami ◽  
Yoichiro Shimura ◽  
Hirohide Ohnishi

2019 ◽  
Author(s):  
Inês Coelho ◽  
Nádia Duarte ◽  
Maria Paula Macedo ◽  
Carlos Penha-Gonçalves

AbstractThe involvement of gut microbiota in liver disease has been addressed in the context of the “leaky gut hypothesis” postulating that dysbiosis allow microbial components to elicit liver inflammatory responses and hepatic tissue damage. Conversely, commensal gut microbiota acting on innate immune receptors protect against hepatotoxic insults. Given that mice deficient for the triggering receptor expressed on myeloid cells-2 (Trem-2) show increased vulnerability to experimental drug-induced hepatic damage we explored the possibility that Trem-2 is a modulator of gut microbiota composition.We found that microbiota composition in untreated Trem-2 KO mice differs from the wild-type showing overall decrease in microbiota diversity and increased representation of Verrucomicrobia. Interestingly, induction of liver damage with hepatotoxic drugs blunted this microbiota diversity difference and altered phyla composition with increased representation of Verrucomicrobia during acute hepatic injury and Proteobacteria during chronic challenge. Furthermore, co-housing experiments that homogenized microbiota diversity showed that the increased liver tissue vulnerability to hepatotoxic insults in Trem-2 KO mice was not dependent on microbiota composition. This work uncouples Trem-2 dependent alterations in gut commensal microbiota from Trem-2 pro-recovery effects in the damaged liver tissue. These findings support the possibility that unlinked actions of innate immune receptors contribute to disease association with microbiota alterations, particularly with the Verrucomicrobia phylum.ImportanceTrem-2 is a mammalian innate immunity receptor involved in development and resolution of tissue damage, namely in the brain and in the liver. Nevertheless, it is not known whether gut microbiota is contributing to these Trem-2 mediated phenotypes. We found that Trem-2 KO mice spontaneously display different gut microbiota composition as compared to wild-type mice, namely with increased abundance of the phylum Verrucomicrobia. Notably these differences do not impact the control of Trem-2 on liver tissue vulnerability to hepatotoxic insults. This work uncouples Trem-2 modulation of gut microbiota and the role of Trem-2 on responses to liver damage. This work brings new insights on role of innate immune receptors on the association of organic and systemic diseases with gut microbiota.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Johan Dicksved ◽  
Patrik Ellström ◽  
Lars Engstrand ◽  
Hilpi Rautelin

ABSTRACTThe gut microbiota is essential for human health, but very little is known about how the composition of this ecosystem can influence and respond to bacterial infections. Here we address this by prospectively studying the gut microbiota composition before, during, and after naturalCampylobacterinfection in exposed poultry abattoir workers. The gut microbiota composition was analyzed with 16S amplicon sequencing of fecal samples from poultry abattoir workers during the peak season ofCampylobacterinfection in Sweden. The gut microbiota compositions were compared between individuals who became culture positive forCampylobacterand those who remained negative. Individuals who becameCampylobacterpositive had a significantly higher abundance ofBacteroides(P= 0.007) andEscherichia(P= 0.002) species than those who remained culture negative. Furthermore, this group had a significantly higher abundance ofPhascolarctobacterium(P= 0.017) andStreptococcus(P= 0.034) sequences than theCampylobacter-negative group, which had an overrepresentation ofClostridiales(P= 0.017), unclassifiedLachnospiraceae(P= 0.008), andAnaerovorax(P= 0.015) sequences. Intraindividual comparisons of the fecal microbiota compositions yielded small differences over time inCampylobacter-negative participants, but significant long-term changes were found in theCampylobacter-positive group (P< 0.005). The results suggest that the abundance of specific genera in the microbiota reduces resistance toCampylobactercolonization in humans and thatCampylobacterinfection can have long-term effects on the composition of the human fecal microbiota.IMPORTANCEStudies using mouse models have made important contributions to our understanding of the role of the gut microbiota in resistance to bacterial enteropathogen colonization. The relative abundances ofEscherichia coliandBacteroidesspecies have been pointed out as important determinants of susceptibility to Gram-negative pathogens in general andCampylobacterinfection in particular. In this study, we assessed the role of the human gut microbiota in resistance toCampylobactercolonization by studying abattoir workers that are heavily exposed to these bacteria. Individuals with a certain composition of the gut microbiota became culture positive forCampylobacter. As their microbiotas were characterized by high abundances ofBacteroidesspp. andE. coli, well in line with the findings with mouse models, these bacterial species likely play an important role in colonization resistance also in humans.


Sign in / Sign up

Export Citation Format

Share Document