scholarly journals Microbiome transfer between IL-1RI-/- and wild-type mice during high or low-fat feeding alters metabolic tissue functionality but not glucose homeostasis.

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Jessica C. Ralston ◽  
Kathleen A.J. Mitchelson ◽  
Gina M. Lynch ◽  
Tam T.T. Tran ◽  
Conall R. Strain ◽  
...  

AbstractReduced inflammatory signaling (IL-1RI-/-) alters metabolic responses to dietary challenges (1). Inflammasome deficiency (e.g. IL-18-/-, Asc-/-) can modify gut microbiota concomitant with hepatosteatosis; an effect that was transferable to wild-type (WT) mice by co-housing (2). Taken together, this evidence suggests that links between diet, microbiota and IL-1RI-signaling can influence metabolic health. Our aim was to determine whether IL-1RI-mediated signaling interacted with the gut microbiome to impact metabolic tissue functionality in a diet-specific fashion. Male WT (C57BL/J6) and IL-1RI-/- mice were fed either high-fat diet (HFD; 45% kcal) or low-fat diet (LFD; 10% kcal) for 24 weeks and were housed i) separately by genotype or ii) with genotypes co-housed together (i.e. isolated vs shared microbial environment; n = 8–10 mice per group). Glucose tolerance and insulin secretion response (1.5 g/kg i.p.), gut microbiota composition and caecal short-chain fatty acids (SCFA) were assessed. Liver and adipose tissue were harvested and examined for triacylglycerol (TAG) formation, cholesterol and metabolic markers (Fasn, Cpt1α, Pparg, Scd1, Dgat1/2), using histology, gas-chromatography and RT-PCR, respectively. Statistical analysis included 1-way or 2-way ANOVA, where appropriate, with Bonferroni post-hoc correction. Co-housing significantly affected gut microbiota composition, illustrated by clustering in PCoA (unweighted UniFrac distance) of co-housed mice but not their single-housed counterparts, on both HFD and LFD. The taxa driving these differences were primarily from Lachnospiraceae and Ruminococcaceae families. Single-housed WT had lower hepatic weight, TAG, cholesterol levels and Fasn despite HFD, an effect lost in their co-housed counterparts, who aligned more to IL-1RI-/- hepatic lipid status. Hepatic Cpt1α was lowest in co-housed WT. Adipose from IL-1RI-/- groups on HFD displayed increased adipocyte size and reduced adipocyte number compared to WT groups, but greater lipogenic potential (Pparg, Scd1, Dgat2) alongside a blunted IL-6 response to pro-inflammatory stimuli (~32%, P = 0.025). Whilst caecal SCFA concentrations were not different between groups, single-housed IL-1RI-/- adipocytes showed greatest sensitivity to SCFA-induced lipogenesis. Interestingly, differences in tissue functionality and gut microbiome occurred despite unaltered glucose tolerance; although there was a trend for phenotypic transfer of body weight via co-housing. For all endpoints examined, similar genotype/co-housing effects were observed for both HFD and LFD with the greatest impacts seen in HFD-fed mice. In conclusion, while the gut microbiome may be an important consideration in dietary interventions, these results question the magnitude of its impact in relation to the IL-1RI-dependent immunometabolism-glucose homeostasis axis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2806 ◽  
Author(s):  
Evdokia K. Mitsou ◽  
Georgia Saxami ◽  
Emmanuela Stamoulou ◽  
Evangelia Kerezoudi ◽  
Eirini Terzi ◽  
...  

Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S896-S897
Author(s):  
Faris S Alnezary ◽  
Tasnuva Rashid ◽  
Khurshida Begum ◽  
Travis J Carlson ◽  
Anne J Gonzales-Luna ◽  
...  

Abstract Background Antimicrobials disrupt the gut microbiota by reducing gut microbiome diversity and quantity. Galleria mellonella provides an invertebrate model that is inexpensive, easy to maintain, and does not require specialized equipment. This study investigated the feasibility of using G. mellonella as an in vivo model to evaluate the effect of different antimicrobials on gut microbiota. Methods To determine baseline gut microbiota composition, the gut contents of G. mellonella were extracted and genomic DNA underwent shotgun meta-genomic sequencing. To determine the effect of infection and antibiotic use, 30 larvae were injected (left proleg) with ~1 × 105 colony-forming unit (cfu) of methicillin-resistant Staphylococcus aureus (MRSA) and were randomized 1:1:1 to treatment with vancomycin (20 mg/kg) or a natural antimicrobial (Nigella sativa seed oil, 70 mg/kg; NS oil), or a combination. The larvae were kept at 37°C post-infection and monitored daily for 72 hours for activity, extent of cocoon formation/growth, melanization, and survival. Two larvae from each group were randomly selected and homogenized with PBS as controls. After 24 hours of incubation, gut contents were extracted and plated for MRSA and Enterococcus cfu counts. Results Metagenomics analysis showed the gut microbiota composition of G. mellonella larvae was dominated by a subset of closely-related Enterococcus species. After 24 hours of exposure, mean Enterococcus counts were 4 × 103 cfu in the vancomycin arm and 6.2 × 104 cfu in the NS oil arm. Mean MRSA counts were 3.3 × 105 cfu in vancomycin arm and 1.5 × 104 cfu in NS oil arm. The combination of vancomycin and NS oil had higher Enterococcus counts than the vancomycin alone arm (6.3 × 104 cfu vs. 4 × 103 cfu, respectively), suggesting that NS oil may have a role in protecting the gut microbiota. Conclusion This study provides preliminary evidence to support the potential use of G. mellonella to assess the in vivo effect of a natural and synthetic antimicrobial on the gut microbiota. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Mei Wang ◽  
Brooke Smith ◽  
Brock Adams ◽  
Miller Tran ◽  
Ryan Dilger ◽  
...  

Abstract Objectives Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea in human infants and young farm animals. Osteopontin (OPN), a glycoprotein present in high concentration in human milk, has immunomodulatory functions, which could indirectly impact the microbiota. Furthermore, a previous study has shown fecal microbiota composition differs between wild-type and OPN knockout mice. Herein, the effects of OPN-enriched algae on the gut microbiota composition and volatile fatty acid (VFA) concentrations of ETEC-infected piglets were assessed. Methods Naturally-farrowed piglets were sow-reared for 21 days and then randomized to two weaning diets: WT (formula + 1% wild-type algae) or OPN (formula + 1% OPN-enriched algae). On postnatal day (PND) 31, all piglets were infected orally with a live culture of ETEC (1010 colony-forming unit/3 mL dose) daily for three consecutive days. On PND 41, ascending colon (AC) contents were collected. Gut microbiota was assessed by sequencing V3-V4 regions of 16S rRNA gene and VFAs were determined by gas chromatography. Alpha-diversity and VFAs were analyzed using PROC MIXED procedure of SAS. Beta-diversity was evaluated by permutational multivariate analysis of variance (PERMANOVA) and differential abundance analysis on the bacterial genera was performed using DESeq2 package of R. Results Shannon indices were lower in the AC contents of OPN piglets compared to WT piglets. The overall colonic microbiota of OPN piglets differed from that of WT piglets (PERMANOVA P = 0.015). At genus level, OPN-enriched algae increased the abundance of Streptococcus, decreased the abundances of Sutterella, Candidatus Soleaferrea, dga-11 gut group, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-010, unculturedRuminococcaceae, Prevotella 2 and 7 compared to piglets consuming wild-type algae (P < 0. 05). OPN piglets also had higher (P < 0.05) concentrations of acetate, propionate, butyrate and valerate compared to WT. Conclusions In ETEC infected piglets, 1% OPN-enriched algae decreased alpha-diversity and modulated the microbiota composition and VFA profiles compared to 1% WT algae. Other studies have shown that OPN inhibits biofilm formation in vitro, but future research is needed to assess in vivo microbiome-modulation mechanisms. Funding Sources Triton Algae Innovations.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Yinlong Cheng ◽  
Yining Li ◽  
Yonghong Xiong ◽  
Yixin Zou ◽  
Siyu Chen ◽  
...  

Abstract Purpose To investigate the effect of liver-specific knockdown of ANGPTL8 on the structure of the gut microbiota. Methods We constructed mice with liver-specific ANGPTL8 knockdown by using an adeno-associated virus serotype 8 (AAV8) system harbouring an ANGPTL8 shRNA. We analysed the structure and function of the gut microbiome through pyrosequencing and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional prediction. Results Compared with controls, ANGPTL8 shRNA reduced the Simpson index and Shannon index (p < 0.01) of the gut microbiota in mice. At the phylum level, the sh-ANGPTL8 group showed a healthier gut microbiota composition than controls (Bacteroidetes: controls 67.52%, sh-ANGPTL8 80.75%; Firmicutes: controls 10.96%, sh-ANGPTL8 8.58%; Proteobacteria: controls 9.29%, sh-ANGPTL8 0.98%; F/B ratio: controls 0.16, sh-ANGPTL8 0.11). PCoA and UPGMA analysis revealed a significant difference in microbiota composition, while KEGG analysis revealed a significant difference in microbiota function between controls and the sh-ANGPTL8 group. Conclusion Our results revealed that inhibition of ANGPTL8 signalling altered the structure of the gut microbiome, which might further affect the metabolism of mice. We have thus identified ANGPTL8 as a novel hepatogenic hormone potentially involving the liver-gut axis and regulating the structure of the gut microbiota.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Damien Keating

Abstract The gut microbiome is an established regulator of aspects of host metabolism, such as glucose handling. Despite the known impacts of the gut microbiota on host glucose homeostasis, the underlying mechanisms are unknown. The gut microbiome is also a potent mediator of gut-derived serotonin synthesis, and this peripheral source of serotonin is itself a regulator of glucose homeostasis. Here, we determined whether the gut microbiome influences glucose homeostasis through effects on gut-derived serotonin. Using both pharmacological inhibition and genetic deletion of gut-derived serotonin synthesis, we find [1] that the improvements in host glucose handling caused by antibiotic-induced changes in microbiota composition are dependent on the synthesis of peripheral serotonin. [1] The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19802-19804. Martin AM, Yabut JM, Choo JM, Page AJ, Sun EW, Jessup CF, Wesselingh SL, Khan WI, Rogers GB, Steinberg GR, Keating DJ.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3289
Author(s):  
Manon Balvers ◽  
Mélanie Deschasaux ◽  
Bert-Jan van den Born ◽  
Koos Zwinderman ◽  
Max Nieuwdorp ◽  
...  

It is currently unknown whether associations between gut microbiota composition and type 2 diabetes (T2D) differ according to the ethnic background of individuals. Thus, we studied these associations in participants from two ethnicities characterized by a high T2D prevalence and living in the same geographical area, using the Healthy Life In Urban Settings (HELIUS) study. We included 111 and 128 T2D participants on metformin (Met-T2D), 78 and 49 treatment-naïve T2D (TN-T2D) participants, as well as a 1:1 matched group of healthy controls from, respectively, African Surinamese and South-Asian Surinamese descent. Fecal microbiome profiles were obtained through 16S rRNA gene sequencing. Univariate and machine learning analyses were used to explore the associations between T2D and the composition and function of the gut microbiome in both ethnicities, comparing Met-T2D and TN-T2D participants to their respective healthy control. We found a lower α-diversity for South-Asian Surinamese TN-T2D participants but no significant associations between TN-T2D status and the abundance of bacterial taxa or functional pathways. In African Surinamese participants, we did not find any association between TN-T2D status and the gut microbiome. With respect to Met-T2D participants, we identified several bacterial taxa and functional pathways with a significantly altered abundance in both ethnicities. More alterations were observed in South-Asian Surinamese. Some altered taxa and pathways observed in both ethnicities were previously related to metformin use. This included a strong negative association between the abundance of Romboutsia and Met-T2D status. Other bacterial taxa were consistent with previous observations in T2D, including reduced butyrate producers such as Anaerostipes hadrus. Hence, our results highlighted both shared and unique gut microbial biomarkers of Met-T2D in individuals from different ethnicities but living in the same geographical area. Future research using higher-resolution shotgun sequencing is needed to clarify the role of ethnicity in the association between T2D and gut microbiota composition.


2019 ◽  
Author(s):  
Inês Coelho ◽  
Nádia Duarte ◽  
Maria Paula Macedo ◽  
Carlos Penha-Gonçalves

AbstractThe involvement of gut microbiota in liver disease has been addressed in the context of the “leaky gut hypothesis” postulating that dysbiosis allow microbial components to elicit liver inflammatory responses and hepatic tissue damage. Conversely, commensal gut microbiota acting on innate immune receptors protect against hepatotoxic insults. Given that mice deficient for the triggering receptor expressed on myeloid cells-2 (Trem-2) show increased vulnerability to experimental drug-induced hepatic damage we explored the possibility that Trem-2 is a modulator of gut microbiota composition.We found that microbiota composition in untreated Trem-2 KO mice differs from the wild-type showing overall decrease in microbiota diversity and increased representation of Verrucomicrobia. Interestingly, induction of liver damage with hepatotoxic drugs blunted this microbiota diversity difference and altered phyla composition with increased representation of Verrucomicrobia during acute hepatic injury and Proteobacteria during chronic challenge. Furthermore, co-housing experiments that homogenized microbiota diversity showed that the increased liver tissue vulnerability to hepatotoxic insults in Trem-2 KO mice was not dependent on microbiota composition. This work uncouples Trem-2 dependent alterations in gut commensal microbiota from Trem-2 pro-recovery effects in the damaged liver tissue. These findings support the possibility that unlinked actions of innate immune receptors contribute to disease association with microbiota alterations, particularly with the Verrucomicrobia phylum.ImportanceTrem-2 is a mammalian innate immunity receptor involved in development and resolution of tissue damage, namely in the brain and in the liver. Nevertheless, it is not known whether gut microbiota is contributing to these Trem-2 mediated phenotypes. We found that Trem-2 KO mice spontaneously display different gut microbiota composition as compared to wild-type mice, namely with increased abundance of the phylum Verrucomicrobia. Notably these differences do not impact the control of Trem-2 on liver tissue vulnerability to hepatotoxic insults. This work uncouples Trem-2 modulation of gut microbiota and the role of Trem-2 on responses to liver damage. This work brings new insights on role of innate immune receptors on the association of organic and systemic diseases with gut microbiota.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mary Farrell ◽  
Stina Ramne ◽  
Phébée Gouinguenet ◽  
Louise Brunkwall ◽  
Ulrika Ericson ◽  
...  

Abstract Background Copy number (CN) variation (CNV) of the salivary amylase gene (AMY1) influences the ability to digest starch and may influence glucose homeostasis, obesity and gut microbiota composition. Hence, the aim was to examine the association of AMY1 CNV with fasting glucose, BMI, and gut microbiota composition considering habitual starch intake and to investigate the effect of AMY1 CNV on the postprandial response after two different starch doses. Methods The Malmö Offspring Study (n = 1764, 18–71 years) was used to assess interaction effects between AMY1 CNV (genotyped by digital droplet polymerase chain reaction) and starch intake (assessed by 4-day food records) on fasting glucose, BMI, and 64 gut bacteria (16S rRNA sequencing). Participants with low (≤ 4 copies, n = 9) and high (≥ 10 copies, n = 10) AMY1 CN were recruited for a crossover meal study to compare postprandial glycemic and insulinemic responses to 40 g and 80 g starch from white wheat bread. Results In the observational study, no overall associations were found between AMY1 CNV and fasting glucose, BMI, or gut microbiota composition. However, interaction effects between AMY1 CNV and habitual starch intake on fasting glucose (P = 0.03) and BMI (P = 0.05) were observed, suggesting inverse associations between AMY1 CNV and fasting glucose and BMI at high starch intake levels and positive association at low starch intake levels. No associations with the gut microbiota were observed. In the meal study, increased postprandial glucose (P = 0.02) and insulin (P = 0.05) were observed in those with high AMY1 CN after consuming 40 g starch. This difference was smaller and nonsignificant after consuming 80 g starch. Conclusions Starch intake modified the observed association between AMY1 CNV and fasting glucose and BMI. Furthermore, depending on the starch dose, a higher postprandial glucose and insulin response was observed in individuals with high AMY1 CN than in those with low AMY1 CN. Trial registration ClinicalTrials.gov, NCT03974126. Registered 4 June 2019—retrospectively registered.


Sign in / Sign up

Export Citation Format

Share Document