Diversity and function of rhizosphere microorganisms between wild and cultivated medicinal plant Glycyrrhiza uralensis Fisch under different soil conditions

Author(s):  
Zhou-Yan Dong ◽  
Manik Prabhu Narsing Rao ◽  
Tian-Jiang Liao ◽  
Li Li ◽  
Yong-Hong Liu ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2135
Author(s):  
Dilfuza Egamberdieva ◽  
Hua Ma ◽  
Burak Alaylar ◽  
Zohreh Zoghi ◽  
Aida Kistaubayeva ◽  
...  

Licorice (Glycyrrhiza uralensis Fisch.) is a salt and drought tolerant legume suitable for rehabilitating abandoned saline lands, especially in dry arid regions. We hypothesized that soil amended with maize-derived biochar might alleviate salt stress in licorice by improving its growth, nutrient acquisition, and root system adaptation. Experiments were designed to determine the effect of different biochar concentrations on licorice growth parameters, acquisition of C (carbon), nitrogen (N), and phosphorus (P) and on soil enzyme activities under saline and non-saline soil conditions. Pyrolysis char from maize (600 °C) was used at concentrations of 2% (B2), 4% (B4), and 6% (B6) for pot experiments. After 40 days, biochar improved the shoot and root biomass of licorice by 80 and 41% under saline soil conditions. However, B4 and B6 did not have a significant effect on shoot growth. Furthermore, increased nodule numbers of licorice grown at B4 amendment were observed under both non-saline and saline conditions. The root architectural traits, such as root length, surface area, project area, root volume, and nodulation traits, also significantly increased by biochar application at both B2 and B4. The concentrations of N and K in plant tissue increased under B2 and B4 amendments compared to the plants grown without biochar application. Moreover, the soil under saline conditions amended with biochar showed a positive effect on the activities of soil fluorescein diacetate hydrolase, proteases, and acid phosphomonoesterases. Overall, this study demonstrated the beneficial effects of maize-derived biochar on growth and nutrient uptake of licorice under saline soil conditions by improving nodule formation and root architecture, as well as soil enzyme activity.


2021 ◽  
Vol 6 (2) ◽  
pp. 475-477
Author(s):  
Yan-Yun Yang ◽  
Sheng-Nan Li ◽  
Liang Xu ◽  
Yan-Ping Xing ◽  
Rong Zhao ◽  
...  

2013 ◽  
Vol 50 ◽  
pp. 93-100 ◽  
Author(s):  
Dan Wang ◽  
Yu-Xin Pang ◽  
Wen-Quan Wang ◽  
Chun-Yang Wan ◽  
Jun-Ling Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document