Glycyrrhiza uralensis Fisch. ex DC., Glycyrrhiza inflata Batalin, Glycyrrhiza glabra L.

2010 ◽  
pp. 412-415
2020 ◽  
pp. 447-452
Author(s):  
Rainer W. Bussmann ◽  
Ketevan Batsatsashvili ◽  
Zaal Kikvidze ◽  
Farzaneh Khajoei Nasab ◽  
Abdolbaset Ghorbani ◽  
...  

2020 ◽  
pp. 373-381
Author(s):  
Lan Weiwei ◽  
Bo Liu ◽  
Rainer W. Bussmann ◽  
Ketevan Batsatsashvili ◽  
Zaal Kikvidze

Author(s):  
Rainer W. Bussmann ◽  
Ketevan Batsatsashvili ◽  
Zaal Kikvidze ◽  
Farzaneh Khajoei Nasab ◽  
Abdolbaset Ghorbani ◽  
...  

2021 ◽  
Author(s):  
Zihui Shen ◽  
Xiaozhen Pu ◽  
Shaoming Wang ◽  
Xiuxiu Dong ◽  
Xiaojiao Cheng ◽  
...  

Abstract Silicon effectively alleviates the damage caused by salt stress in plants and can improve plant salt tolerance. However, the details of the mechanism by which silicon improves salt tolerance of liquorice are limited, and the effects of foliar application of silicon on different liquorice species under salt stress are not known. Here, the effects of foliar spray of silicon on the growth, physiological and biochemical characteristics, and ion balance of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. were investigated. High salt stress resulted in the accumulation of a large amount of Na+, decreased photosynthetic pigment content, perturbed ion homeostasis, and eventually inhibited the both liquorice species growth. These effects were more pronounced in G. uralensis, as G. inflata is more salt tolerant than G. uralensis. Foliar spraying of silicon effectively reduced the decomposition of photosynthetic pigments, improved gas exchange parameters, and promoted photosynthesis. It also effectively inhibited lipid peroxidation and electrolyte leakage and enhanced osmotic adjustment of plants. Further, silicon application increased the K+ concentration, reduced Na+ absorption, transport and accumulation in the plants. The protective effects of silicon were more pronounced in G. uralensis than those in G. inflata. In conclusion, silicon reduces Na+ absorption, improves ion balance, and alleviates the negative effects of salt stress in the two liquorice species studied, but the effect is liquorice species-dependent. These findings may inform novel strategies for protecting liquorice plants against salt stress and also provide a theoretical basis for the evaluation of salt tolerance and the scientific cultivation of liquorice.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11047
Author(s):  
Hanli Dang ◽  
Tao Zhang ◽  
Zhongke Wang ◽  
Guifang Li ◽  
Wenqin Zhao ◽  
...  

Background Endophytic fungi influence the quality and quantity of the medicinal plant’s bioactive compounds through specific fungus-host interactions. Nevertheless, due to the paucity of information, the composition of endophytic fungal communities and the mechanism by which effective ingredients regulate endophytic fungal communities in roots remains unclear. Methods In this study, we collected root and soil samples (depth range: 0–20, 20–40, and 40–60 cm) of three Glycyrrhiza species (Glycyrrhiza uralensis, Glycyrrhiza inflata, and Glycyrrhiza glabra). Glycyrrhizic acid and liquiritin content were determined using high-performance liquid chromatography (HPLC), and total flavonoid content was determined using ultraviolet spectrophotometry. High-throughput sequencing technology was employed to explore the composition and diversity of the endophytic fungal community in different root segments of three Glycyrrhiza species. Furthermore, soil samples were subjected to physicochemical analyses. Results We observed that the liquiritin content was not affected by the root depth (0–20 cm, 20–40 cm, and 40–60 cm). Still, it was significantly affected by the Glycyrrhiza species (Glycyrrhiza uralensis, Glycyrrhiza inflata, Glycyrrhiza glabra) (P < 0.05). In Glycyrrhiza root, a total of eight phyla and 140 genera were annotated so far, out of which Ascomycota and Basidiomycota phyla, and the Fusarium, Paraphoma, and Helminthosporium genera were found to be significantly dominant. Spearman correlation analysis revealed that liquiritin content was accountable for the differences in the diversity of the endophytic fungal community. Furthermore, distance-based redundancy analysis (db-RDA) showed that physicochemical properties of the soil (available potassium and ammonium nitrogen) and the root factors (liquiritin and water content) were the main contributing factors for the variations in the overall structure of the endophytic fungal community. Our results showed that the effective ingredients of Glycyrrhiza root and physicochemical properties of the soil regulated the endophytic fungal community composition and medicinal licorice diversity.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
LL Gauthier ◽  
C Simmler ◽  
DS Nikolic ◽  
R Van Breemen ◽  
SN Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document