scholarly journals Identification of N-glycans with GalNAc-containing antennae from recombinant HIV trimers by ion mobility and negative ion fragmentation

Author(s):  
David J. Harvey ◽  
Anna-Janina Behrens ◽  
Max Crispin ◽  
Weston B. Struwe

AbstractNegative ion collision-induced dissociation (CID) of underivatized N-glycans has proved to be a simple, yet powerful method for their structural determination. Recently, we have identified a series of such structures with GalNAc rather than the more common galactose capping the antennae of hybrid and complex glycans. As part of a series of publications describing the negative ion fragmentation of different types of N-glycan, this paper describes their CID spectra and estimated nitrogen cross sections recorded by travelling wave ion mobility mass spectrometry (TWIMS). Most of the glycans were derived from the recombinant glycoproteins gp120 and gp41 from the human immunodeficiency virus (HIV), recombinantly derived from human embryonic kidney (HEK 293T) cells. Twenty-six GalNAc-capped hybrid and complex N-glycans were identified by a combination of TWIMS, negative ion CID, and exoglycosidase digestions. They were present as the neutral glycans and their sulfated and α2→3-linked sialylated analogues. Overall, negative ion fragmentation of glycans generates fingerprints that reveal their structural identity.

2016 ◽  
Vol 51 (3) ◽  
pp. 219-235 ◽  
Author(s):  
David J. Harvey ◽  
Charlotte A. Scarff ◽  
Matthew Edgeworth ◽  
Weston B. Struwe ◽  
Kevin Pagel ◽  
...  

2016 ◽  
Vol 51 (11) ◽  
pp. 1064-1079 ◽  
Author(s):  
David J. Harvey ◽  
Charlotte A. Scarff ◽  
Matthew Edgeworth ◽  
Kevin Pagel ◽  
Konstantinos Thalassinos ◽  
...  

2013 ◽  
Vol 34 (16) ◽  
pp. 2368-2378 ◽  
Author(s):  
David J. Harvey ◽  
Charlotte A. Scarff ◽  
Matthew Edgeworth ◽  
Max Crispin ◽  
Christopher N. Scanlan ◽  
...  

Author(s):  
David J. Harvey ◽  
Weston B. Struwe ◽  
Anna-Janina Behrens ◽  
Snezana Vasiljevic ◽  
Max Crispin

AbstractStructural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M – H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans. Graphical abstract


2012 ◽  
Vol 65 (5) ◽  
pp. 504 ◽  
Author(s):  
Antonio N. Calabrese ◽  
Lauren A. Speechley ◽  
Tara L. Pukala

This study demonstrates the ability of travelling wave ion mobility-mass spectrometry to measure collision cross-sections of ions in the negative mode, using a calibration based approach. Here, negative mode ion mobility-mass spectrometry was utilised to understand structural transitions of calmodulin upon Ca2+ binding and complexation with model peptides melittin and the plasma membrane Ca2+ pump C20W peptide. Coexisting calmodulin conformers were distinguished on the basis of their mass and cross-section, and identified as relatively folded and unfolded populations, with good agreement in collision cross-section to known calmodulin geometries. Titration of calcium tartrate to physiologically relevant Ca2+ levels provided evidence for intermediately metalated species during the transition from apo- to holo-calmodulin, with collision cross-section measurements indicating that higher Ca2+ occupancy is correlated with more compact structures. The binding of two representative peptides which exemplify canonical compact (melittin) and extended (C20W) peptide-calmodulin binding models has also been interrogated by ion mobility mass spectrometry. Peptide binding to calmodulin involves intermediates with metalation states from 1–4 Ca2+, which demonstrate relatively collapsed structures, suggesting neither the existence of holo-calmodulin or a pre-folded calmodulin conformation is a prerequisite for binding target peptides or proteins. The biological importance of the different metal unsaturated calmodulin complexes, if any, is yet to be understood.


Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


2013 ◽  
Vol 345-347 ◽  
pp. 54-62 ◽  
Author(s):  
Ganesh N. Sivalingam ◽  
Jun Yan ◽  
Harpal Sahota ◽  
Konstantinos Thalassinos

Sign in / Sign up

Export Citation Format

Share Document