Investigations of the solid state reaction process in mechanically alloyed Zr-Al-Cu-Ni bulk metallic glasses by analytical transmission electron microscopy

1998 ◽  
Vol 361 (6-7) ◽  
pp. 740-742
Author(s):  
M. Seidel ◽  
M. Reibold ◽  
J. Eckert
2014 ◽  
Vol 215 ◽  
pp. 144-149 ◽  
Author(s):  
Sergey M. Zharkov ◽  
Roman R. Altunin ◽  
Evgeny T. Moiseenko ◽  
Galina M. Zeer ◽  
Sergey N. Varnakov ◽  
...  

Solid-state reaction processes in Fe/Si multilayer nanofilms have been studied in situ by the methods of transmission electron microscopy and electron diffraction in the process of heating from room temperature up to 900ºС at a heating rate of 8-10ºС/min. The solid-state reaction between the nanolayers of iron and silicon has been established to begin at 350-450ºС increasing with the thickness of the iron layer.


1994 ◽  
Vol 364 ◽  
Author(s):  
Sung G. Pyo ◽  
Nack J. Kim

AbstractNiAl intermetallic powder has been synthesized by mechanical alloying of elemental powders in an attritor mill using controlled atmosphere. The mechanically alloyed (MA) powders were consolidated by vacuum hot pressing (VHP), resulting in a material which was fully dense. Analytical transmission electron microscopy has been used to understand the development of microstructure with processing. The dispersoid particles present are mostly A12O3 with small amount of A1N. It has been shown that morphology of the dispersoid particles are not uniform and the larger dispersoid particles are located mostly along the grain boundaries with the dispersoid-free zones near them. Coarsening behavior of the dispersoid particles is different depending on their locations, i.e., within the grain or along the grain boundaries. The accelerated coarsening of dispersoids along the grain boundaries occurs concurrently with that of the grains and the formation of dispersoid-free zones (DFZs) are observed along the grain boundaries. It is suggested that this abnormal dispersoid coarsening and the formation of DFZ are due to the coupled migration of dispersoids and grain boundaries.


Nano Letters ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 8365-8371 ◽  
Author(s):  
Khalil El hajraoui ◽  
Eric Robin ◽  
Clemens Zeiner ◽  
Alois Lugstein ◽  
Stéphanie Kodjikian ◽  
...  

Nano Letters ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 2897-2904 ◽  
Author(s):  
Khalil El hajraoui ◽  
Minh Anh Luong ◽  
Eric Robin ◽  
Florian Brunbauer ◽  
Clemens Zeiner ◽  
...  

2009 ◽  
Vol 283-286 ◽  
pp. 453-457
Author(s):  
Jung Hoon Yoo ◽  
Dae Hwang Yoo ◽  
Jung Hwa Seo ◽  
Ji Ling Dong ◽  
Young Sang Na ◽  
...  

In Zr-Cu-Ni-Al bulk metallic glasses where there are no dislocations, localized plastic deformation in shear bands occurs largely by the formation and migration of defects such as voids, micropores, shear bands and local variations in composition. Thus, the investigation on defects is critical for the understanding and improvement of plastic deformation in metallic glasses. In this study, microstructures and nano defects in the Zr-Cu-Ni-Al BMGs are characterized by variety of techniques, such as X-ray diffractometry, high resolution transmission electron microscopy, scanning transmission electron microscopy and electron holography.


2000 ◽  
Vol 644 ◽  
Author(s):  
B. Van De Moortele ◽  
J.M. Pelletier ◽  
J.L. Soubeyroux ◽  
I.R. Lu

AbstractThree bulk metallic glasses, with different resistance against crystallisation, were investigated using DSC experiments, X-ray diffraction, transmission electron microscopy and mechanical spectroscopy. Like in other non-crystalline materials, the elastic modulus exhibits a large decrease above the glass transition temperature. In materials with a large supercooled region (Pd-Ni-Cu-P for instance), this decrease can reach three decades, leading to an attractive glass forming ability. In contrast, in bulk metallic glasses in which onset of crystallisation occurs very rapidly above Tg, this decrease is on less than one decade. A correlation is made with the microstructure evolution revealed by X-Ray diffraction and transmission electron microscopy.


Author(s):  
M. J. Carr ◽  
J. F. Shewbridge ◽  
T. O. Wilford

Strong solid state bonds are routinely produced between physical vapor deposited (PVD) silver coatings deposited on sputter cleaned surfaces of two dissimilar metal parts. The low temperature (200°C) and short time (10 min) used in the bonding cycle are advantageous from the standpoint of productivity and dimensional control. These conditions unfortunately produce no microstructural changes at or near the interface that are detectable by optical, SEM, or microprobe examination. Microstructural problems arising at these interfaces could therefore easily go undetected by these techniques. TEM analysis has not been previously applied to this problem because of the difficulty in specimen preparation. The purpose of this paper is to describe our technique for preparing specimens from solid state bonds and to present our initial observations of the microstructural details of such bonds.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document