scholarly journals Complex Eigenvalue Splitting for the Dirac Operator

Author(s):  
Koki Hirota ◽  
Jens Wittsten

AbstractWe analyze the eigenvalue problem for the semiclassical Dirac (or Zakharov–Shabat) operator on the real line with general analytic potential. We provide Bohr–Sommerfeld quantization conditions near energy levels where the potential exhibits the characteristics of a single or double bump function. From these conditions we infer that near energy levels where the potential (or rather its square) looks like a single bump function, all eigenvalues are purely imaginary. For even or odd potentials we infer that near energy levels where the square of the potential looks like a double bump function, eigenvalues split in pairs exponentially close to reference points on the imaginary axis. For even potentials this splitting is vertical and for odd potentials it is horizontal, meaning that all such eigenvalues are purely imaginary when the potential is even, and no such eigenvalue is purely imaginary when the potential is odd.

2021 ◽  
Vol 57 (2) ◽  
pp. 139-147
Author(s):  
A. G. Baskakov ◽  
I. A. Krishtal ◽  
N. B. Uskova

2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


2000 ◽  
Vol 26 (1) ◽  
pp. 237
Author(s):  
Duszyński
Keyword(s):  

1982 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Thomson
Keyword(s):  

2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


Sign in / Sign up

Export Citation Format

Share Document