Nociception induces a differential presynaptic modulation of the synaptic efficacy of nociceptive and proprioceptive joint afferents

Author(s):  
A. Ramírez-Morales ◽  
E. Hernández ◽  
P. Rudomin
Author(s):  
Hanns Ulrich Zeilhofer ◽  
Robert Ganley

The spinal dorsal horn and its equivalent structure in the brainstem constitute the first sites of synaptic integration in the pain pathway. A huge body of literature exists on alterations in spinal nociceptive signal processing that contribute to the generation of exaggerated pain states and hence to what is generally known as “central sensitization.” Such mechanisms include changes in synaptic efficacy or neuronal excitability, which can be evoked by intense nociceptive stimulation or by inflammatory or neuropathic insults. Some of these changes cause alterations in the functional organization of dorsal horn sensory circuits, leading to abnormal pathological pain sensations. This article reviews the present state of this knowledge. It does not cover the contributions of astrocytes and microglia in detail as their functions are the subject of a separate chapter.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hisato Nakazono ◽  
Katsuya Ogata ◽  
Akinori Takeda ◽  
Emi Yamada ◽  
Shinichiro Oka ◽  
...  

AbstractTranscranial alternating current stimulation (tACS) at 20 Hz (β) has been shown to modulate motor evoked potentials (MEPs) when paired with transcranial magnetic stimulation (TMS) in a phase-dependent manner. Repetitive paired-pulse TMS (rPPS) with I-wave periodicity (1.5 ms) induced short-lived facilitation of MEPs. We hypothesized that tACS would modulate the facilitatory effects of rPPS in a frequency- and phase-dependent manner. To test our hypothesis, we investigated the effects of combined tACS and rPPS. We applied rPPS in combination with peak or trough phase tACS at 10 Hz (α) or β, or sham tACS (rPPS alone). The facilitatory effects of rPPS in the sham condition were temporary and variable among participants. In the β tACS peak condition, significant increases in single-pulse MEPs persisted for over 30 min after the stimulation, and this effect was stable across participants. In contrast, β tACS in the trough condition did not modulate MEPs. Further, α tACS parameters did not affect single-pulse MEPs after the intervention. These results suggest that a rPPS-induced increase in trans-synaptic efficacy could be strengthened depending on the β tACS phase, and that this technique could produce long-lasting plasticity with respect to cortical excitability.


Nature ◽  
1977 ◽  
Vol 265 (5592) ◽  
pp. 368-370 ◽  
Author(s):  
ALAN D. GRINNELL ◽  
MARY B. RHEUBEN ◽  
MICHAEL S. LETINSKY

2005 ◽  
Vol 15 (01n02) ◽  
pp. 55-70 ◽  
Author(s):  
AKHIL R GARG ◽  
KLAUS OBERMAYER ◽  
BASABI BHAUMIK

Recent experimental studies of hetero-synaptic interactions in various systems have shown the role of signaling in the plasticity, challenging the conventional understanding of Hebb's rule. It has also been found that activity plays a major role in plasticity, with neurotrophins acting as molecular signals translating activity into structural changes. Furthermore, role of synaptic efficacy in biasing the outcome of competition has also been revealed recently. Motivated by these experimental findings we present a model for the development of simple cell receptive field structure based on the competitive hetero-synaptic interactions for neurotrophins combined with cooperative hetero-synaptic interactions in the spatial domain. We find that with proper balance in competition and cooperation, the inputs from two populations (ON/OFF) of LGN cells segregate starting from the homogeneous state. We obtain segregated ON and OFF regions in simple cell receptive field. Our modeling study supports the experimental findings, suggesting the role of synaptic efficacy and the role of spatial signaling. We find that using this model we obtain simple cell RF, even for positively correlated activity of ON/OFF cells. We also compare different mechanism of finding the response of cortical cell and study their possible role in the sharpening of orientation selectivity. We find that degree of selectivity improvement in individual cells varies from case to case depending upon the structure of RF field and type of sharpening mechanism.


1985 ◽  
Vol 248 (1) ◽  
pp. H33-H39 ◽  
Author(s):  
G. T. Wetzel ◽  
J. H. Brown

Acetylcholine can be released from parasympathetic nerve endings in rat atria by 57 mM K+ depolarization or by electrical field stimulation. We have studied the presynaptic modulation of [3H]acetylcholine release from superfused rat atria prelabeled with [3H]choline. Exogenous acetylcholine and the specific muscarinic agonist oxotremorine inhibit the stimulation-induced overflow of [3H]acetylcholine into the superfusion medium. The half-maximal inhibitory concentration (IC50) of oxotremorine is 0.3 microM. The cholinesterase inhibitor neostigmine also decreases K+-stimulated [3H]acetylcholine overflow, whereas the muscarinic antagonist atropine enhances the overflow of [3H]acetylcholine. These data suggest that acetylcholine release in atria is modulated through negative feedback by the endogenous transmitter. The sympathetic adrenergic neurotransmitter norepinephrine and the neurohormone epinephrine also inhibit the overflow of [3H]acetylcholine by approximately 60%. The IC50 values for the inhibitory effects of these catecholamines are 6.3 and 2.2 microM, respectively. The inhibitory effect of norepinephrine is blocked by the alpha-adrenergic receptor antagonist yohimbine but not by the beta-adrenergic receptor antagonist propranolol. We suggest that presynaptic muscarinic and alpha-adrenergic receptors participate in the physiological and pharmacological control of cardiac parasympathetic activity.


1977 ◽  
Vol 40 (1) ◽  
pp. 1-8 ◽  
Author(s):  
P. Grigg ◽  
B. J. Greenspan

1. One hundred thirty-eight knee joint afferents from posterior articular nerve (PAN), in primates, were recorded in dorsal root filaments. Responses of afferents were studied in relation to both passive manipulations of the knee and active contractions of quadriceps, semimembranosus, and gastrocnemius muscles. 2. When the knee was passively rotated, most neurons discharged only when extreme angular displacements were achieved. Response of neurons responding to passive extensions was linearly related to the torque applied to the knee. With maintained extensions, discharge in extension neurons adapted slowly. Some of the time constants of adaptation were similar to those for simultaneously recorded torque relaxation. 3. Contractions of quadriceps, semimembranosus, or gastrocnemius muscles could activate many neurons in the absence of changes in joint angle. For quadriceps-activated neurons, rather high torques (mean = 2,450 g with cm) were required. 4. The results support the hypothesis that joint afferents function as capsullar stretch receptors, responding to those mechanical events which result in loading of the capsule.


Sign in / Sign up

Export Citation Format

Share Document