Dorsal Horn Pain Mechanisms

Author(s):  
Hanns Ulrich Zeilhofer ◽  
Robert Ganley

The spinal dorsal horn and its equivalent structure in the brainstem constitute the first sites of synaptic integration in the pain pathway. A huge body of literature exists on alterations in spinal nociceptive signal processing that contribute to the generation of exaggerated pain states and hence to what is generally known as “central sensitization.” Such mechanisms include changes in synaptic efficacy or neuronal excitability, which can be evoked by intense nociceptive stimulation or by inflammatory or neuropathic insults. Some of these changes cause alterations in the functional organization of dorsal horn sensory circuits, leading to abnormal pathological pain sensations. This article reviews the present state of this knowledge. It does not cover the contributions of astrocytes and microglia in detail as their functions are the subject of a separate chapter.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Seung-In Choi ◽  
Ji Yeon Lim ◽  
Sungjae Yoo ◽  
Hyun Kim ◽  
Sun Wook Hwang

TRPV1 is well known as a sensor ion channel that transduces a potentially harmful environment into electrical depolarization of the peripheral terminal of the nociceptive primary afferents. Although TRPV1 is also expressed in central regions of the nervous system, its roles in the area remain unclear. A series of recent reports on the spinal cord synapses have provided evidence that TRPV1 plays an important role in synaptic transmission in the pain pathway. Particularly, in pathologic pain states, TRPV1 in the central terminal of sensory neurons and interneurons is suggested to commonly contribute to pain exacerbation. These observations may lead to insights regarding novel synaptic mechanisms revealing veiled roles of spinal cord TRPV1 and may offer another opportunity to modulate pathological pain by controlling TRPV1. In this review, we introduce historical perspectives of this view and details of the recent promising results. We also focus on extended issues and unsolved problems to fully understand the role of TRPV1 in pathological pain. Together with recent findings, further efforts for fine analysis of TRPV1’s plastic roles in pain synapses at different levels in the central nervous system will promote a better understanding of pathologic pain mechanisms and assist in developing novel analgesic strategies.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 864
Author(s):  
Christopher L. Cioffi

Among the myriad of cellular and molecular processes identified as contributing to pathological pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread interest as a potential class of novel analgesics. The GlyTs are Na+/Cl−-dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a possible mechanism by which to increase spinal extracellular glycine concentrations and enhance GlyR-mediated inhibitory neurotransmission in the dorsal horn. Various inhibitors of both GlyT1 and GlyT2 have demonstrated broad analgesic efficacy in several preclinical models of acute and chronic pain, providing promise for the approach to deliver a first-in-class non-opioid analgesic with a mechanism of action differentiated from current standard of care. This review will highlight the therapeutic potential of GlyT inhibitors as a novel class of analgesics, present recent advances reported for the field, and discuss the key challenges associated with the development of a GlyT inhibitor into a safe and effective agent to treat pain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebecca Rani Das Gupta ◽  
Louis Scheurer ◽  
Pawel Pelczar ◽  
Hendrik Wildner ◽  
Hanns Ulrich Zeilhofer

AbstractThe spinal dorsal horn harbors a sophisticated and heterogeneous network of excitatory and inhibitory neurons that process peripheral signals encoding different sensory modalities. Although it has long been recognized that this network is crucial both for the separation and the integration of sensory signals of different modalities, a systematic unbiased approach to the use of specific neuromodulatory systems is still missing. Here, we have used the translating ribosome affinity purification (TRAP) technique to map the translatomes of excitatory glutamatergic (vGluT2+) and inhibitory GABA and/or glycinergic (vGAT+ or Gad67+) neurons of the mouse spinal cord. Our analyses demonstrate that inhibitory and excitatory neurons are not only set apart, as expected, by the expression of genes related to the production, release or re-uptake of their principal neurotransmitters and by genes encoding for transcription factors, but also by a differential engagement of neuromodulator, especially neuropeptide, signaling pathways. Subsequent multiplex in situ hybridization revealed eleven neuropeptide genes that are strongly enriched in excitatory dorsal horn neurons and display largely non-overlapping expression patterns closely adhering to the laminar and presumably also functional organization of the spinal cord grey matter.


Author(s):  
Olha Lazorko ◽  
Virna Zhanna ◽  
Vasyl Yahupov ◽  
Oksana Valchuk-Orkusha ◽  
Iryna Melnyk ◽  
...  

Recently, the revision of priorities in the interpretation of the security problem and their transformation from the interests of the state to the interests of man himself, have actualized the study of psychological protection. Especially aspects of personal protection are relevant in the professional sphere, which led to the development of the problem of personal protection as a subject of professionalization, taking into account psychological and neuropsychological factors. The purpose of the study is to empirically verify the structurally functional organization of personal protection as a subject of professionalization. The proposed model is based on the methodological principles and conditions of the content of the subject, system and synergetic approaches (the subject principle determines the subjective features expressed in subjective-personal characteristics, the system principle - substantial features expressed in socially personal characteristics; the synergetic principle - quality features that are integrative sign of professional protection of the individual. The sample of the study was: graduating students (n = 180); 4th and 5th year students (n = 230); doctors and medical workers (n = 441). The characteristics of psychodiagnostic tools used in these blocks of the empirical research program are described. The results of the study demonstrated the excellent content of empirical referents of professional protection of the individual in the period of professional optation, professional training and actual professional implementation in ordinary and special conditions of activity. The scientific position of the empirical study of professional safety of the individual is realized in the separation of the experience of social satisfaction, the system-forming factor of which is the urgent need that initiates the manifestation of successful professional realization.


2011 ◽  
Vol 105 (6) ◽  
pp. 3010-3021 ◽  
Author(s):  
Hui-Juan Hu ◽  
Robert W. Gereau

Metabotropic glutamate (mGlu) receptors play important roles in the modulation of nociception. Previous studies demonstrated that mGlu5 modulates nociceptive plasticity via activation of ERK signaling. We have reported recently that the Kv4.2 K+ channel subunit underlies A-type currents in spinal cord dorsal horn neurons and that this channel is modulated by mGlu5-ERK signaling. In the present study, we tested the hypothesis that modulation of Kv4.2 by mGlu5 occurs in excitatory spinal dorsal horn neurons. With the use of a transgenic mouse strain expressing enhanced green fluorescent protein (GFP) under control of the promoter for the γ-amino butyric acid (GABA)-synthesizing enzyme, glutamic acid decarboxylase 67 (GAD67), we found that these GABAergic neurons express less Kv4.2-mediated A-type current than non-GAD67-GFP neurons. Furthermore, the mGlu1/5 agonist, (R,S)-3,5-dihydroxyphenylglycine, had no modulatory effects on A-type currents or neuronal excitability in this subgroup of GABAergic neurons but robustly modulated A-type currents and neuronal excitability in non-GFP-expressing neurons. Immunofluorescence studies revealed that Kv4.2 was highly colocalized with markers of excitatory neurons, such as vesicular glutamate transporter 1/2, PKCγ, and neurokinin 1, in cultured dorsal horn neurons. These results indicate that mGlu5-Kv4.2 signaling is associated with excitatory dorsal horn neurons and suggest that the pronociceptive effects of mGlu5 activation in the spinal cord likely involve enhanced excitability of excitatory neurons.


2019 ◽  
Vol 63 (1) ◽  
Author(s):  
Xiao E Cheng ◽  
Long Xian Ma ◽  
Xiao Jin Feng ◽  
Meng Ye Zhu ◽  
Da Ying Zhang ◽  
...  

Cav3 channels consist of three isoforms, Cav3.1 (α1G), Cav3.2 (α1H), and Cav3.3 (α1I), which produce low-threshold spikes that trigger burst firings in nociceptive neurons of the spinal dorsal horn (SDH) and dorsal root ganglion (DRG). Although Cav3.2 plays a crucial role in pathological pain, its distribution in SDH still remains controversial. One study showed that Cav3.2 is ubiquitously expressed in neurons, but another study implied that Cav3.2 is expressed restricted to astrocytes. To unravel these discrepancies, we used methods of immunohistochemistry either with or without antigen retrieval (AR) pre-treatment to detect Cav3 in SDH and DRG from both rats and mice. Moreover, Cav3.2 mRNA was detected in mice SDH using in situ hybridization. We found that the expression pattern of Cav3.2 but not Cav3.1 and Cav3.3 in SDH were largely different with or without AR pre-treatment, which showed a neuron-like and an astrocyte-like appearance, respectively. Double staining further demonstrated that Cav3.2 was mainly co-stained with the neuronal marker NeuN in the presence of AR but was with glial fibrillary acidic protein (GFAP, marker for astrocytes) in the absence of AR pre-treatment. Importantly, Cav3.2 mRNA was mainly co-localized with Cav3.2 but not GFAP. Together, our findings indicate that AR pre-treatment or not impacts the expression pattern of Cav3.2, which may make a significant contribution to the future study of Cav3.2 in SDH.


Sign in / Sign up

Export Citation Format

Share Document