scholarly journals Detection of epimuscular myofascial forces by Golgi tendon organs

Author(s):  
Huub Maas ◽  
Wendy Noort ◽  
Hiltsje A. Smilde ◽  
Jacob A. Vincent ◽  
Paul Nardelli ◽  
...  

AbstractSkeletal muscles embed multiple tendon organs, both at the proximal and distal ends of muscle fibers. One of the functions of such spatial distribution may be to provide locally unique force feedback, which may become more important when stresses are distributed non-uniformly within the muscle. Forces exerted by connections between adjacent muscles (i.e. epimuscular myofascial forces) may cause such local differences in force. The aim of this exploratory study was to investigate the effects of mechanical interactions between adjacent muscles on sensory encoding by tendon organs. Action potentials from single afferents were recorded intra-axonally in response to ramp-hold release (RHR) stretches of a passive agonistic muscle at different lengths or relative positions of its passive synergist. The tendons of gastrocnemius (GAS), plantaris (PL) and soleus (SO) muscles were cut from the skeleton for attachment to servomotors. Connective tissues among these muscles were kept intact. Lengthening GAS + PL decreased the force threshold of SO tendon organs (p = 0.035). The force threshold of lateral gastrocnemius (LG) tendon organs was not affected by SO length (p = 0.371). Also displacing LG + PL, kept at a constant muscle–tendon unit length, from a proximal to a more distal position resulted in a decrease in force threshold of LG tendon organs (p = 0.007). These results indicate that tendon organ firing is affected by changes in length and/or relative position of adjacent synergistic muscles. We conclude that tendon organs can provide the central nervous system with information about local stresses caused by epimuscular myofascial forces.

1980 ◽  
Vol 16 (3) ◽  
pp. 287-290 ◽  
Author(s):  
U. Proske ◽  
J.E. Gregory

Development ◽  
2001 ◽  
Vol 128 (7) ◽  
pp. 1059-1068 ◽  
Author(s):  
H.C. Etchevers ◽  
C. Vincent ◽  
N.M. Le Douarin ◽  
G.F. Couly

Most connective tissues in the head develop from neural crest cells (NCCs), an embryonic cell population present only in vertebrates. We show that NCC-derived pericytes and smooth muscle cells are distributed in a sharply circumscribed sector of the vasculature of the avian embryo. As NCCs detach from the neural folds that correspond to the future posterior diencephalon, mesencephalon and rhombencephalon, they migrate between the ectoderm and the neuroepithelium into the anterior/ventral head, encountering mesoderm-derived endothelial precursors. Together, these two cell populations build a vascular tree rooted at the departure of the aorta from the heart and ramified into the capillary plexi that irrigate the forebrain meninges, retinal choroids and all facial structures, before returning to the heart. NCCs ensheath each aortic arch-derived vessel, providing every component except the endothelial cells. Within the meninges, capillaries with pericytes of diencephalic and mesencephalic neural fold origin supply the forebrain, while capillaries with pericytes of mesodermal origin supply the rest of the central nervous system, in a mutually exclusive manner. The two types of head vasculature contact at a few defined points, including the anastomotic vessels of the circle of Willis, immediately ventral to the forebrain/midbrain boundary. Over the course of evolution, the vertebrate subphylum may have exploited the exceptionally broad range of developmental potentialities and the plasticity of NCCs in head remodelling that resulted in the growth of the forebrain.


1990 ◽  
Vol 64 (3) ◽  
pp. 813-821 ◽  
Author(s):  
G. Horcholle-Bossavit ◽  
L. Jami ◽  
J. Petit ◽  
R. Vejsada ◽  
D. Zytnicki

1. The responses of individual tendon organs of the cat peroneus tertius muscle to motor-unit contractions were recorded in anesthetized cats during experiments in which all the Ib-afferent fibers from the muscle had been prepared for recording in dorsal root filaments. This was possible because the cat peroneus tertius only contains a relatively small complement of approximately 10 tendon organs. 2. Motor units of different physiological types were tested for their effects on the whole population of tendon organs in the muscle. Effects of unfused tetanic contractions were tested under both isometric and anisometric conditions. Each motor unit activated at least one tendon organ, and each tendon organ was activated by at least one motor unit. Individual slow-type units were found to act on a single or two receptors, whereas a fast-type unit could activate up to six tendon organs. 3. In one experiment, the effects of 8 motor units on 10 tendon organs were examined. One fast-twitch, fatigue resistant (FR)-type unit acted on six tendon organs, of which four were also activated by another FR unit. The contraction of each unit, on its own, elicited a range of individual responses, from weak to strong. The discharge frequencies of individual responses displayed no clear relation with the strength of contraction, nor did they accurately represent the shape of force profiles. But when all the discharges were pooled, a fairly good correspondence appeared between variations of contractile force and variations of averaged discharge frequencies.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 54 (6) ◽  
pp. 1383-1395 ◽  
Author(s):  
J. E. Gregory ◽  
D. L. Morgan ◽  
U. Proske

A continuing controversy surrounds the question of whether Golgi tendon organs are examples of receptors in which impulses may be generated at more than one site. This paper reports a systematic examination of a number of models incorporating single or multiple impulse generators and of the compatibility of their predictions with experimental observations. Two phenomena, in particular, that must be accounted for are nonlinear summation and cross-adaptation. When two motor units each with a direct effect on the tendon organ are stimulated together, the rate of discharge is greater than either individual rate but is less than their sum. In cross-adaptation a conditioning response elicited by one motor unit contraction produces adaptation of the discharge associated with stimulation of a second motor unit. A model with a central impulse generator can be modified to account for nonlinear summation by postulating a nonlinear transformation in the generator current-to-impulse rate conversion. Experiments measuring summation of responses to stimulation of three inputs produced results that did not support this model. Another variation of the model, which had a nonlinearity in the tension-to-current step and cross-connections (mechanical or neural) between tendon strands stressed by contracting muscle fibers, was able to account for the observations. A second model that provided the right predictions was a multiple impulse generator with cross-connections. Which of the two models best fits the experimental observations can be decided by comparing the calculated summation coefficients and cross-adaptation coefficients. A central impulse generator predicts a negative correlation, the multiple impulse generator a positive correlation. All of the observations were made using tendon organs of cat soleus muscle. Responses were recorded to stimulation of filaments of ventral root. In a comparison between 20 pairs of responses from six tendon organs the correlation between summation and cross-adaptation coefficients was found to be significantly positive. We conclude that the tendon organ model that accurately predicts all of the experimental observations incorporates multiple generators.


1988 ◽  
Vol 59 (5) ◽  
pp. 1510-1523 ◽  
Author(s):  
G. Horcholle-Bossavit ◽  
L. Jami ◽  
J. Petit ◽  
R. Vejsada ◽  
D. Zytnicki

1. The discharges from individual Golgi tendon organs of peroneus tertius and brevis muscles were recorded in anesthetized cats. Responses to unfused isometric contractions of single motor units and combinations of motor units were compared with responses to contractions eliciting muscle shortening (i.e., shortening contractions). 2. In 75% of the examined instances, the effect of muscle shortening during unfused contractions was a slight decrease in tendon organ activation, in keeping with the reduction of contractile tension recorded at the muscle tendon. In other instances there was either no change in tendon organ response or, in less than 10% of instances, a slight increase For two motor units eliciting similar activation of a given tendon organ under isometric conditions, the effect of shortening contraction was not necessarily the same. 3. The reductions observed in tendon organ discharges upon muscle shortening were less than proportional to the reductions of contractile tension and difficult to correlate with the properties of motor units, as determined under isometric conditions. The present observations suggest three main reasons for this lack of relation. 4. The first reason depended on the properties of motor units, in that the relation between length changes and tension changes was not the same for all units. Two motor units developing similar isometric tensions did not necessarily produce the same degree of muscle shortening. Some units produced relatively significant shortening without much loss of tension. 5. Second, the dynamic sensitivity of tendon organs is known to exert a major influence on their responses to isometric unfused contractions, accounting for 1:1 driving of discharge during tension oscillations and high frequency bursts upon abrupt increase of tension. Although less tension was produced and the rate of tension development was slower in shortening contractions, similar manifestations of the dynamic sensitivity of tendon organs were observed. In such cases, the responses of tendon organs were the same whether or not the muscle shortened during contraction. 6. Third, when several motor units were stimulated in combination, the unloading influences of in-parallel units were facilitated by muscle shortening so that unloading effects, which were hardly visible under isometric conditions became evident during shortening contractions.


2000 ◽  
Vol 80 (1) ◽  
pp. 83-133 ◽  
Author(s):  
J. Duysens ◽  
F. Clarac ◽  
H. Cruse

How is load sensed by receptors, and how is this sensory information used to guide locomotion? Many insights in this domain have evolved from comparative studies since it has been realized that basic principles concerning load sensing and regulation can be found in a wide variety of animals, both vertebrate and invertebrate. Feedback about load is not only derived from specific load receptors but also from other types of receptors that previously were thought to have other functions. In the central nervous system of many species, a convergence is found between specific and nonspecific load receptors. Furthermore, feedback from load receptors onto central circuits involved in the generation of rhythmic locomotor output is commonly found. During the stance phase, afferent activity from various load detectors can activate the extensor part in such circuits, thereby providing reinforcing force feedback. At the same time, the flexion is suppressed. The functional role of this arrangement is that activity in antigravity muscles is promoted while the onset of the next flexion is delayed as long as the limb is loaded. This type of reinforcing force feedback is present during gait but absent in the immoble resting animal.


1995 ◽  
Vol 73 (6) ◽  
pp. 2578-2583 ◽  
Author(s):  
C. A. Pratt

1. The functional organization of heterogenic reflexes produced by activation of extensor force receptors (Golgi tendon organs) was studied in intact cats during stationary stance. Intramuscular stimulation (200 Hz, 20 ms) of hindlimb extensor muscles via chronically implanted electrodes was used to evoke weak muscle contractions and naturally activate Golgi tendon organ Ib afferents while cats stood unrestrained with each paw on a moveable triaxial force plate. 2. Intramuscular stimulation of every hindlimb extensor muscle tested in this study evoked excitatory responses that were widely distributed among hindlimb extensor muscles. Source and target specializations in the functional organization of this positive force feedback system were also observed. For example, stimulation of ankle extensors typically excited extensors and flexors at the ankle and hip (but not knee), whereas stimulation of hip extensors typically excited only extensors at all three joints. In addition, intramuscular stimulation of either lateral (LG) or medial (MG) gastrocnemius consistently inhibited soleus while exciting other extensors at the ankle and more proximal joints. 3. The electromyographic (EMG) reflex responses described above are attributed to the natural (via muscle contraction) activation of extensor group Ib afferents. Direct activation of intramuscular afferents by the stimulus was unlikely because there was no evidence that Ia afferents, which have the lowest electrical thresholds, were activated. Both the observed inhibition of the synergist, soleus, and the excitation of the antagonist, tibialis anterior, produced by gastrocnemius stimulation are opposite to the reflex effects that would be produced at the ankle by activation of gastrocnemius Ia afferents.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 81 (2) ◽  
pp. 467-478 ◽  
Author(s):  
T. Richard Nichols

Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat. The soleus (S), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles of the cat are interlinked by rapid spinal reflex pathways. In the decerebrate state, these heterogenic reflexes are either excitatory and length dependent or inhibitory and force dependent. Mechanographic analysis was used to obtain additional evidence that the muscle spindle primary ending and the Golgi tendon organ provide the major contributions to these reflexes, respectively. The tendons of the triceps surae muscles were separated and connected to independent force transducers and servo-controlled torque motors in unanesthetized, decerebrate cats. The muscles were activated as a group using crossed-extension reflexes. Electrical stimulation of the caudal cutaneous sural nerve was used to provide a particularly strong activation of MG and decouple the forces of the triceps surae muscles. During either form of activation, the muscles were stretched either individually or in various combinations to determine the strength and characteristics of autogenic and heterogenic feedback. The corresponding force responses, including both active and passive components, were measured during the changing background tension. During activation of the entire group, the excitatory, heterogenic feedback linking the three muscles was found to be strongest onto LG and weakest onto MG, in agreement with previous results concerning the strengths of heteronymous Ia excitatory postsynaptic potentials among the triceps surae muscles. The inhibition, which is known to affect only the soleus muscle, was dependent on active contractile force and was detected essentially as rapidly as length dependent excitation. The inhibition outlasted the excitation and was blocked by intravenous strychnine. These results indicate that the excitatory and inhibitory effects are dominated by feedback from primary spindle receptors and Golgi tendon organs. The interactions between these two feedback pathways potentially can influence both the mechanical coupling between ankle and knee.


1975 ◽  
Vol 38 (5) ◽  
pp. 1217-1231 ◽  
Author(s):  
J. A. Stephens ◽  
R. M. Reinking ◽  
D. G. Stuart

The responses of 13 Golgi tendon organs to graded force development of 29 motor units in medial gastrocnemius of the cat have been studied in five experiments. Of the 13 tendon organs, 11 were responsive to passive stretch within the physiological range of muscle length and 5 were "spontaneously" active at very short lengths where no passive tension could be recorded. The relationship between passive force and the firing rates of the various afferents ranged from a linear one to a power relation (Y = Axb + c) with b, a widely varying exponent. Results support the general conclusion that although many Ib afferents respond to passive force within the physiological range of muscle stretch, this form of stimulus is not a particularly effective one. The statis responses of Golgi tendon organs to active force development produced by single motor units was studied at different muscle lengths. In all cases the apparent sensitivity (change in firing rate per active force developed) decreased as muscle length approached Lo. The static responses of Golgi tendon organs to force developed by single motor units were also studied during fatiguing contractions. The data suggest a sigmoid relationship between force developed at the tendon and the Ib response. The collective response of all 13 tendon organs to active and passive forces at different muscle lengths was also examined. This analysis offered further support for the viewpoint that active motor unit contractions provide themost significant excitatory input to tendon organs and that changes in passive force during muscle stretch have comparatively little effect on the collective tendon organ response. The interaction between active and passive force inputs to the Golgi tendon organs is discussed in relation to the complicated nature of the relationship between forces measured at the tendon and those acting within the receptor capsule. When these complications were taken into account it was possible to explain the differences in responsiveness of a given tendon organ to active contraction of several motor units and to passive force in terms of a single force-firing rate curve for the receptor. It is concluded that changes in the force of contraction of single motor units result in relatively small changes in Ib afferent firing and that during normal muscle contractions, changes in the number of motor units acting on a single receptor must produce far more significant changes in firing rate than changes in the amount of force developed by any single unit. Changes in dynamic Ib sensitivity to single motor unit contractions are also shown to depend on length and in a similar way to the changes in static Ib sensitivity. During fatiguing contractions, a sigmoid relation was found between the dynamic Ib response and the rate of force development by single motor units.


Sign in / Sign up

Export Citation Format

Share Document