Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure

2009 ◽  
Vol 44 (4) ◽  
pp. 655-666 ◽  
Author(s):  
Zhuo-Ping Shao ◽  
Chang-Hua Fang ◽  
Sheng-Xia Huang ◽  
Gen-Lin Tian
2010 ◽  
Vol 452-453 ◽  
pp. 261-264 ◽  
Author(s):  
Kenichi Takemura

In this study, molding condition and tensile properties of jute fiber reinforced composite were examined. PVA resin was used as matrix which is one of the biodegradable resin. Before tensile test, specimens have an offset twist. The tensile test after twist of jute fiber cloth was also conducted. As a result, following results were obtained. In the case of jute fiber cloth, the effect of twist deformation to tensile strength is not great. The reason is thought that the fiber cloth is flexible and easy to deform in this form. In the case of composite, molding time has an effect to the tensile properties. As the molding temperature increases, the tensile strength increases. So, the diffraction intensity was measured. The reason of effect to the strength is thought that the crystallization occurred in the matrix. When the molding temperature is so high, fiber has degradation, and the strength of the composite decreases. As the degree of twist increases, the strength decreases. The reasons are the delamination between layers and debonding between fiber and matrix.


2016 ◽  
Vol 1133 ◽  
pp. 121-125
Author(s):  
Hanif Muqsit ◽  
Ali Nawaz Mengal ◽  
Saravanan Karupannan

In this study, the focus was on the optimum design of laminate stacking sequences (LSS) of basalt fiber reinforced composite (BFRP) structure. Eleven rectangular composite panels with different stacking sequences and fiber orientations were analyzed. A three-point flexural test according to ASTM D790 was carried out in ANSYS to simulate the basalt fiber reinforced composite layup flexural strength. From the results, it was found that the composite structure layup of [0/0/45/0/0]s has the highest strength among all samples.


Sign in / Sign up

Export Citation Format

Share Document