Impact of the organic cation transporter 2 inhibitor cimetidine on the single-dose pharmacokinetics of the glucosylceramide synthase inhibitor lucerastat in healthy subjects

2019 ◽  
Vol 76 (3) ◽  
pp. 431-437 ◽  
Author(s):  
Marie-Laure Boof ◽  
Atef Halabi ◽  
Mike Ufer ◽  
Jasper Dingemanse
2018 ◽  
Vol 10 (1) ◽  
pp. 172
Author(s):  
Deliana Nur Ihsani Rahmi ◽  
Melva Louisa ◽  
Vivian Soetikno

Objective: This study aimed to investigate the efficacy of curcumin (CMN) and nanocurcumin (NC) at preventing cisplatin (CDPP)-inducednephrotoxicity.Methods: Two membrane transporters, copper transporter 1 (CTR1) and organic cation transporter 2 (OCT2), have been identified involved in activeaccumulation of CDPP into renal tubular cells. We analyzed OCT2 transcription levels in rat kidney tissue and determined whether renoprotectivemechanism of CMN involves CTR1. Rats were randomly divided into five groups: (1) Control, (2) CDPP (7 mg/kg as single dose (i.p.), (3) CDPP+CMN(7 mg/kg CDPP as a single dose, i.p.+100 mg/kg/day of CMN), (4) CDPP+50 mg NC (7 mg/kg CDPP as single dose, i.p.+50 mg/kg/day NC), and(5) CDPP+100 mg NC (7 mg/kg CDPP as single dose, i.p.+100 mg/kg/day NC). Quantitative reverse transcription-polymerase chain reaction wasperformed to calculate relative expression of CTR1 and OCT2 genes in rat kidney.Results: Expression of CTR1 was unassociated with administration of CMN or NC, indicating CTR1 is uninvolved in renoprotective mechanism of CMN.The administration of 100 mg/kg/day NC increased expression of OCT2; this increase was higher compared with normal expression levels. This maybe due to another regulatory mechanism from the CMN itself.Conclusion: NC has a better renoprotective effect compared with curcumin, suggested by the increased OCT2 expression on its administration inCDPP-treated rats.


2021 ◽  
pp. 096032712110479
Author(s):  
Guangju Wang ◽  
Yajuan Bi ◽  
Hui Xiong ◽  
Tongwei Bo ◽  
Lifeng Han ◽  
...  

The balance of cisplatin uptake and efflux, mediated mainly by organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 (MATE1), respectively, determines the renal accumulation and nephrotoxicity of cisplatin. Using transporter-mediated cellular uptake assay, we identified wedelolactone (WEL), a medicinal plant-derived natural compound, is a competitive inhibitor of OCT2 and a noncompetitive inhibitor of MATE1. Wedelolactone showed a selectivity to inhibit OCT2 rather than MATE1. Cytotoxicity studies revealed that wedelolactone alleviated cisplatin-induced cytotoxicity in OCT2-overexpressing HEK293 cells, whereas it did not alter the cytotoxicity of cisplatin in various cancer cell lines. Additionally, wedelolactone altered cisplatin pharmacokinetics, reduced kidney accumulation of cisplatin, and ameliorated cisplatin-induced acute kidney injury in the Institute of Cancer Research mice. In conclusion, these findings suggest a translational potential of WEL as a natural therapy for preventing cisplatin-induced nephrotoxicity and highlight the need for drug–drug interaction investigations of WEL with other treatments which are substrates of OCT2 and/or MATE1.


2003 ◽  
Vol 64 (5) ◽  
pp. 1037-1047 ◽  
Author(s):  
Christopher Volk ◽  
Valentin Gorboulev ◽  
Thomas Budiman ◽  
Georg Nagel ◽  
Hermann Koepsell

2007 ◽  
Vol 293 (1) ◽  
pp. F21-F27 ◽  
Author(s):  
Sunhapas Soodvilai ◽  
Atip Chatsudthipong ◽  
Varanuj Chatsudthipong

The effects of protein kinases MAPK and PKA on the regulation of organic cation transporter 2 (OCT2) were investigated both in a heterologous cell system [Chinese hamster ovary (CHO-K1) cells stably transfected with rabbit (rb)OCT2] and in native intact rabbit renal proximal S2 segments. Inhibition of MEK (by U-0126) or PKA (by H-89) reduced transport activity of rbOCT2 in CHO-K1 cells. The inhibitory effect of U-0126 combined with H-89 produced no additive effect, indicating that the action of PKA and MAPK in the regulation of rbOCT2 is in a common pathway. Activation of PKA by forskolin stimulated rbOCT2 activity, and this stimulatory effect was eliminated by H-89, indicating that the stimulation required PKA activation. In S2 segments of rabbit renal proximal tubules, activation of MAPK (by EGF) and PKA (by forskolin) stimulated activity of rbOCT2, and this activation was abolished by U-0126 and H-89, respectively. This is the first study to show that MAPK and PKA are involved, apparently in a common pathway, in the regulation of OCT2 activity in both a heterologous cell system and intact renal proximal tubules.


Sign in / Sign up

Export Citation Format

Share Document