heterologous cell
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Kamil Charubin ◽  
Gwendolyn J Gregory ◽  
ELEFTHERIOS TERRY PAPOUTSAKIS

The evolution of bacteria is driven by random genetic mutations and horizontal gene transfer (HGT) of genetic material from other bacteria. HGT can occur via transformation, transduction, and conjugation. Here, we present a potential new mechanism of HGT which occurs in a syntrophic Clostridium coculture. We have previously shown that in syntrophic cocultures of Clostridium acetobutylicum and Clostridium ljungdahlii, the two organisms undergo heterologous cell fusion, which includes fusion of the peptidoglycan cell walls and membranes. Heterologous cell fusion facilitated a large-scale exchange of cytoplasmic protein and RNA between the two organisms, leading to the formation of hybrid bacterial cells containing cytoplasmic material of the two parent organisms. Here we present new evidence that cell fusion events also facilitate the exchange of plasmid DNA between the two organisms of the syntrophic coculture. Through the use of a selective subculturing process, we successfully isolated wild-type C. acetobutylicum clones which have acquired a portion of the plasmid DNA, containing the antibiotic resistance marker, from a recombinant strain of C. ljungdahlii. Fusion events led to formation of persistent aberrant hybrid cells with distinct morphogenetic characteristics. Furthermore, our data support the concept of a novel, interspecies, mechanism of acquiring antibiotic resistance. Since neither organism contains any known conjugation machinery or mechanism, these findings expand our understanding of multi-species microbiomes, their survival strategies, and evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. C. Soler ◽  
T. Kowatz ◽  
A. E. Sloan ◽  
T. S. McCormick ◽  
K. D. Cooper ◽  
...  

AbstractThe inability to over-express Aquaporin 6 (AQP6) in the plasma membrane of heterologous cells has hampered efforts to further characterize the function of this aquaglyceroporin membrane protein at atomic detail using crystallographic approaches. Using an Aquaporin 3-tGFP Reporter (AGR) system we have identified a region within loop C of AQP6 that is responsible for severely hampering plasma membrane expression. Serine substitution corroborated that amino acids present within AQP6194–213 of AQP6 loop C contribute to intracellular endoplasmic reticulum (ER) retention. This intracellular retention signal may preclude proper plasma membrane trafficking and severely curtail expression of AQP6 in heterologous expression systems.


2021 ◽  
Vol 220 (4) ◽  
Author(s):  
Alexander Leithner ◽  
Lukas M. Altenburger ◽  
Robert Hauschild ◽  
Frank P. Assen ◽  
Klemens Rottner ◽  
...  

Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell–cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin–mediated cell–cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality.


2021 ◽  
Author(s):  
David Soler ◽  
Thomas Kowatz ◽  
Andrew Sloan ◽  
Thomas McCormick ◽  
Kevin Cooper ◽  
...  

Abstract The inability to over-express AQP6 in the plasma membrane of heterologous cells has hampered efforts to further characterize the function of this aquaglyceroporin membrane protein at atomic detail. Using the AGR reporter system we have identified a region within loop C of AQP6 that is responsible for severely hampering its plasma membrane localization. Serine substitution corroborated that amino acids present within AQP6194-213 of AQP6 loop C contribute to intracellular retention. This intracellular retention signal may preclude proper plasma membrane trafficking and severely curtail expression of AQP6 in heterologous cells.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Kamil Charubin ◽  
Shannon Modla ◽  
Jeffrey L. Caplan ◽  
Eleftherios Terry Papoutsakis

ABSTRACT Microbial syntrophy is universal in nature, profoundly affecting the composition and function of microbiomes. We have recently reported data suggesting direct cell-to-cell interactions leading to electron and material exchange between the two microbes in the syntrophy between Clostridium ljungdahlii and C. acetobutylicum. Here, transmission electron microscopy and electron tomography demonstrated cell wall and membrane fusions between the two organisms, whereby C. ljungdahlii appears to invade C. acetobutylicum pole to pole. Correlative fluorescence transmission electron microscopy demonstrated large-scale exchange of proteins. Flow cytometry analysis captured the extent and dynamic persistence of these interactions. Dividing hybrid cells were identified containing stained proteins from both organisms, thus demonstrating persistence of cells with exchanged cellular components. Fluorescence microscopy and flow cytometry of one species with stained RNA and the other tagged with a fluorescent protein demonstrated extensive RNA exchange and identified hybrid cells, some of which continued to divide, while some were in an advanced C. acetobutylicum sporulation form. These data demonstrate that cell fusion enables large-scale cellular material exchange between the two organisms. Although unanticipated and never previously reported, these phenomena are likely widely distributed in nature, have profound implications for species evolution and the function of microbial communities, and could find utility in biotechnology. They may shed new light onto little-understood phenomena, such as antibiotic heteroresistance of pathogens, pathogen invasion of human tissues, and the evolutionary trajectory and persistence of unculturable bacteria. IMPORTANCE We report that two different bacterial organisms engage in heterologous cell fusion that leads to massive exchange of cellular material, including proteins and RNA, and the formation of persistent hybrid cells. The interspecies cell fusion observed here involves a syntrophic microbial system, but these heterologous cell fusions were observed even under nonstrict syntrophic conditions, leaving open the possibility that strict syntrophy may not be necessary for interspecies cell fusion and cellular material exchange. Formation of hybrid cells that contain proteins and RNA from both organisms is unexpected and unprecedented. Such fusion events are likely widely distributed in nature, but have gone undetected. The implications are profound and may shed light onto many unexplained phenomena in human health, natural environments, evolutionary biology, and biotechnology.


Author(s):  
Samer Singh ◽  
Rajendra P. Maurya ◽  
Rakesh K. Singh

Protective variables for COVID-19 are unknown. ′Trained immunity′ of the populace as a result of BCG immunization policy implementation and coverage had been suggested to be one of the factors responsible for the differential impact of COVID-19 on different countries. Several trials are underway to evaluate the potential protective role of BCG vaccination in COVID-19. However, the lack of clarity on the use of appropriate controls concerning ′trained immunity′ or the heterologous cell-mediated immunity conferred by BCG vaccination has been a cause of concern leading to more confusion as exemplified by a recently concluded trial in Israel that failed to find any protective correlation with regard to BCG vaccination. Whereas, when we analyze the COVID-19 data of European countries without any regard for BCG vaccination policy but with similar age distribution, comparable confounding variables, and the stage of the pandemic, the prevalence of tuberculin immunoreactivity - a measure of cell-mediated immunity persistence as a result of Mycobacterium spp.(including BCG vaccine) exposure of the populations, is found consistently negatively correlated with COVID-19 infections and mortality per million population, at all the time points evaluated. We propose that on-going and future studies evaluating the effect of BCG vaccination on COVID-19 outcomes may actively consider, if not already, the inclusion of ′controls′ for underlying ′trained immunity′and heterologous cell-mediated immunity prevalence that may be pre-existing or resulting from the intervention (e.g., BCG vaccine) in such trials to arrive at more dependable conclusions concerning their potential benefit.


2020 ◽  
Author(s):  
Alexander Leithner ◽  
Lukas M. Altenburger ◽  
Robert Hauschild ◽  
Frank Assen ◽  
Klemens Rottner ◽  
...  

AbstractDendritic cells (DCs) are crucial for the priming of naïve T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell-cell contact, the immunological synapse (IS). While it is established that actin dynamics regulates signalling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. We show that that the DC cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. We demonstrate that DC actin appears in transient foci at the IS and that these foci are dynamized by the WAVE complex. Absence of WAVE in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin mediated cell-cell adhesions. This results in a lower number of activated and proliferating T cells. Our results reveal an important role of DC actin in the regulation of synaptic contacts with crucial relevance for full T cell expansion.


Author(s):  
Susana Restrepo ◽  
Samantha L. Schwartz ◽  
Matthew J. Kennedy ◽  
Jason Aoto

2019 ◽  
Vol 10 (4) ◽  
pp. 489-496
Author(s):  
L. Goralskii ◽  
N. Radzіkhovsky ◽  
О. Dyshkant ◽  
O. Dunaievska ◽  
I. Sokulskiy

The varying extents of natural disease induced by coronavirus in dogs are not completely clear because the pathogenesis of coronavirus enteritis is not studied sufficiently. In this study, based on the results of clinical, virological, morphological and histochemical studies, we determined the pathogenic role of coronavirus in infected dogs using experimental infection, per os, of isolated canine coronavirus (Nick) with titer of infectious activity equaling 4.8 ± 0.04 lg TCID50/cm, cultivated on heterologous cell cultures. This allowed us to determine, supplement, and generalize the data on pathogenesis of the disease and determine the histological changes in the small intestine, where the initial replication of the pathogen takes place. It was found that lesions and the pattern of the pathomorphological changes (destruction, necrosis and edema of the stroma of the villi, lysis of the cytoplasm, deformation of the enterocyte nuclei) in the small intestine of experimentally infected dogs depend on the development of the pathological process related not only to the changes in histoarchitectonics of the wall of the intestine, but also to tension of the histochemical statics, and obviously the dynamic of the cells (accumulation of the main and acidic proteins in enterocytes’ cytoplasm, hypersecretion of the mucus by goblet cells, decrease of Schiff iodine acid-positive substances in the enterocytes’ cytoplasm, formation of basophilous inclusion bodies), which leads to disorders in metabolic processes in the organism of infected dogs as a response to the virus infection. The examined dogs were found to have morphological changes in the small intestine similar to those in spontaneously infected animals. During the action of coronavirus, the contacts between the enterocytes become damaged, which leads to inhibition of the protective functions of the intestine. At the same time, the pathological process in the experimentally infected animals developed rapidly and had an acute course. Thus, coronavirus enteritis as a separate disease is practically unobserved in field conditions, which makes microscopic survey of the pathogenic impact of the latter on the organism of dogs impossible. Therefore, experimental mono-infection allows a detailed study to be conducted of pathomorphological changes of the initial place of the reproduction of the virus – the small intestine affected by coronavirus enteritis.


Sign in / Sign up

Export Citation Format

Share Document