Thermal radiation effects on MHD flow past a semi-infinite inclined plate in the presence of mass diffusion

2005 ◽  
Vol 41 (12) ◽  
pp. 1056-1065 ◽  
Author(s):  
Emad M. Aboeldahab ◽  
Gamal El-Din A. Azzam
2014 ◽  
Vol 19 (1) ◽  
pp. 195-202
Author(s):  
R. Muthucumaraswamy ◽  
V. Lakshmi

Abstract A theoretical solution of thermal radiation effects on an unsteady flow past a parabolic starting motion of an infinite isothermal vertical plate with uniform mass diffusion has been studied. The plate temperature as well as the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved using the Laplace-transform technique. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The effects of velocity profiles are studied for different physical parameters such as the thermal radiation parameter, thermal Grashof number, mass Grashof number and Schmidt number. It is observed that the velocity increases with increasing values the thermal Grashof number or mass Grashof number. The trend is just reversed with respect to the thermal radiation parameter


2020 ◽  
Vol 65 (1) ◽  
pp. 79-95
Author(s):  
Gaurav Kumar

In the present paper, we study the effect of heat absorption on unsteady flow of a viscous, incompressible, electrically conducting fluid past an impulsively started inclined plate with variable wall temperature and mass diffusion in the presence of transversely applied uniform magnetic field and Hall current. Earlier we analyzed the effects of radiation and chemical reaction on MHD flow past a vertical plate with variable temperature and mass diffusion. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering heat absorption on fluid, and changing the geometry of the model. Here in this paper we are considering the plate positioned inclined from vertically plane and impulsively started with velocity u0. The temperature of plate and the concentration level near the plate is increase linearly with time. The governing equations involved in the present analysis are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters like thermal Grashof number, mass Grashof Number, Prandtl number, permeability parameter, Hall current parameter, heat absorption parameter, magnetic field parameter and Schmidt number. The numerical values obtained for skin-friction and Nusselt number have been tabulated. The results are found to be in a good agreement and the data obtained is in concurrence with the actual MHD fluid flow phenomenon.


2014 ◽  
Vol 19 (1) ◽  
pp. 17-26
Author(s):  
P. Chandrakala ◽  
P. Narayana

Abstract The effects of thermal radiation on a flow past an impulsively started infinite vertical plate in the presence of a magnetic field have been studied. The fluid considered is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity and temperature for different parameters such as the thermal radiation, magnetic field, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of thermal radiation or a magnetic field


Sign in / Sign up

Export Citation Format

Share Document