Heat absorption and Hall current effects on unsteady MHD flow past an inclined plate

2020 ◽  
Vol 65 (1) ◽  
pp. 79-95
Author(s):  
Gaurav Kumar

In the present paper, we study the effect of heat absorption on unsteady flow of a viscous, incompressible, electrically conducting fluid past an impulsively started inclined plate with variable wall temperature and mass diffusion in the presence of transversely applied uniform magnetic field and Hall current. Earlier we analyzed the effects of radiation and chemical reaction on MHD flow past a vertical plate with variable temperature and mass diffusion. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering heat absorption on fluid, and changing the geometry of the model. Here in this paper we are considering the plate positioned inclined from vertically plane and impulsively started with velocity u0. The temperature of plate and the concentration level near the plate is increase linearly with time. The governing equations involved in the present analysis are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters like thermal Grashof number, mass Grashof Number, Prandtl number, permeability parameter, Hall current parameter, heat absorption parameter, magnetic field parameter and Schmidt number. The numerical values obtained for skin-friction and Nusselt number have been tabulated. The results are found to be in a good agreement and the data obtained is in concurrence with the actual MHD fluid flow phenomenon.

MATEMATIKA ◽  
2018 ◽  
Vol 34 (2) ◽  
pp. 433-443
Author(s):  
U. S. Rajput ◽  
Gaurav Kumar

The present study is carried out to examine the effect of Hall current on unsteady flow of a viscous, incompressible and electrically conducting fluid past an exponentially accelerated inclined plate with variable wall temperature and mass diffusion in the presence of transversely applied uniform magnetic field. The plate temperature and the concentration level near the plate increase linearly with time. The governing equations involved in the present analysis are solved by the Laplace-transform technique. The velocity profile is discussed with the help of graphs drawn for different parameters like thermal Grashof number, mass Grashof number, Prandtl number, Hall current parameter, acceleration parameter, the magnetic field parameter and Schmidt number, and the numerical values of skin-friction have been tabulated. It is observed that the flow pattern is affected significantly with plate acceleration, Hall current. The importance of the problem can be seen in cooling of electronic components of a nuclear reactor, bed thermal storage and heat sink in the turbine blades.


2013 ◽  
Vol 18 (1) ◽  
pp. 259-267 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
V. Valliammal

An exact solution of an unsteady flow past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence of a transverse magnetic field has been studied. The plate temperature is raised to Tw and the species concentration level near the plate is also made to rise Cʹw . The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration profiles are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, time and a. It is observed that the velocity decreases with increasing the magnetic field parameter.


The effects of heat source/sink and chemical reaction with mass diffusion on free convective incompressible viscous fluid flow past an accelerated vertical plate with magnetic field has been investigated. Laplace transformation method has been applied to solve the system of linear partial differential equations. The result is presented in form of complementary error function and exponential function. The effect of non dimensional parameters such as Schmidt number (Sc), Accelerated parameter (a), Chemical reaction parameter (K), Prandtl number (Pr), Magnetic field parameter (M), Mass Grashof number (Gm), Heat source/sink parameter (H), Thermal Grashof number (Gr) on temperature, concentration, velocity has been discussed with graphs.


Author(s):  
U. S. Rajput ◽  
Gaurav Kumar

Effects of rotation and chemical reaction on unsteady MHD flow past an impulsively started inclined plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we [7] have studied radiation effect on unsteady MHD flow through porous medium past an oscillating inclined plate with variable temperature and mass diffusion in the presence of Hall current. We obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering rotation and chemical reaction. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Sherwood number have been tabulated. Here too, the results are found to be in agreement with the actual flow.


2014 ◽  
Vol 19 (1) ◽  
pp. 195-202
Author(s):  
R. Muthucumaraswamy ◽  
V. Lakshmi

Abstract A theoretical solution of thermal radiation effects on an unsteady flow past a parabolic starting motion of an infinite isothermal vertical plate with uniform mass diffusion has been studied. The plate temperature as well as the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved using the Laplace-transform technique. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The effects of velocity profiles are studied for different physical parameters such as the thermal radiation parameter, thermal Grashof number, mass Grashof number and Schmidt number. It is observed that the velocity increases with increasing values the thermal Grashof number or mass Grashof number. The trend is just reversed with respect to the thermal radiation parameter


2010 ◽  
Vol 37 (3) ◽  
pp. 189-202 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
Tina Lal ◽  
D. Ranganayakulu

An exact analysis of rotation effects on unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of transversely applied magnetic field has been presented. The plate temperature is raised to Tw and the concentration level near the plate is also raised to C?w . The dimensionless governing equations are solved using Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters like thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing magnetic field parameter.


Sign in / Sign up

Export Citation Format

Share Document