Profile shape optimization in multi-jet impingement cooling of dimpled topologies for local heat transfer enhancement

2014 ◽  
Vol 51 (4) ◽  
pp. 451-464 ◽  
Author(s):  
Deepchand Singh Negi ◽  
Arvind Pattamatta
Author(s):  
Ken-Ichiro Takeishi ◽  
Robert Krewinkel ◽  
Yutaka Oda ◽  
Yuichi Ichikawa

In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs.


Author(s):  
Diane Lauffer ◽  
Bernhard Weigand ◽  
Jens von Wolfersdorf ◽  
Stefan Dahlke ◽  
Roland Liebe

As part of an industrial gas turbine research program, the present study provides the results of a basic investigation of the heat transfer in an impingement cooled combustor heat shield. Because of the complexity and the irregularity of the impingement pattern of the heat shield, standard correlations for regular impingement fields are insufficient and the investigation of local heat transfer enhancement is required therefore. The model to represent a simplified heat shield is made out of perspex, and heat transfer experiments are performed using a transient liquid crystal method. The local air temperature is measured at several positions within the model. The distributions of the Nusselt number on the impingement target plate as well as on the side rims and along the central bolt recess of the heat shield are shown for different impingement Reynolds numbers. The results are compared with respect to the local and overall heat transfer.


Author(s):  
J.-J. Hwang ◽  
C.-S. Cheng ◽  
Y.-P. Tsia

An experimental study has been performed to measure local heat transfer coefficients and static well pressure drops in leading-edge triangular ducts cooled by wall/impinged jets. Coolant provided by an array of equally spaced wall jets is aimed at the leading-edge apex and exits from the radial outlet. Detailed heat transfer coefficients are measured for the two walls forming the apex using transient liquid crystal technique. Secondary-flow structures are visualized to realize the mechanism of heat transfer enhancement by wall/impinged jets. Three right-triangular ducts of the same altitude and different apex angles of β = 30 deg (Duct A), 45 deg (Duct B) and 60 deg (Duct C) are tested for various jet Reynolds numbers (3000≦Rej≦12600) and jet spacings (s/d = 3.0 and 6.0). Results show that an increase in Rej increases the heat transfer on both walls. Local heat transfer on both walls gradually decreases downstream due to the crossflow effect. At the same Rej, the Duct C has the highest wall-averaged heat transfer because of the highest jet center velocity as well as the smallest jet inclined angle. Moreover, the distribution of static pressure drop based on the local through flow rate in the present triangular duct is similar to that that of developing straight pipe flows. Average jet Nusselt numbers on the both walls have been correlated with jet Reynolds number for three different duct shapes.


Author(s):  
Jiansheng Wang ◽  
Zhiqin Yang

The heat transfer characteristic and flow structure of fluid in the rectangular channel with different height vortex generators in small scale are investigated with numerical simulation. Meantime, the properties of heat transfer and flow of fluid in the rectangular channel are compared with the channel which located small scale vortex generator. The variation law of local heat transfer and flow structure in channel is obtained. The mechanism of heat transfer enhancement of small scale vortex generators is discussed in detail. It is found that the influence of vortex generator on heat transfer is not in proportion to the size of vortex generator. What is more, turbulent flow structure near the wall, which influences the temperature distribution near the wall, induces the variety of local heat transfer. The fluid movement towards to the wall causes the heat transfer enhanced. On the contrary, the fluid movement away from the wall decreases the local heat transfer.


Author(s):  
Pavin Ganmol ◽  
Minking K. Chyu ◽  
Mary Anne Alvin

The design geometry and transport phenomena associated with the tip internal cooling can be very complex and has been little studied. Internal cooling channel near a tip region typically inherits a sharp, 180-degree, turn and little or no enhancement installation exists. To explore potential design for enhancement cooling, a series of experiments are performed to investigate the heat transfer enhancement by placing different pin-fins configurations in the tip-turn region of a two-pass channel with a 180-degree sharp turn. Transient liquid crystal technique is applied to acquire detailed local heat transfer data both on the channel surface and pin elements, for Reynolds number between 13,000 and 28,000. Present results suggest that the pin-fins can enhance heat transfer up to 2.3 fold in the tip-turn region and up to 1.3 fold for the entire channel. The presence of the pin-fins also changes the flow pattern in the post turn region which is resulting in more evenly distributed heat transfer downstream of the turn.


2003 ◽  
Vol 125 (4) ◽  
pp. 587-594 ◽  
Author(s):  
S. W. Moon ◽  
S. C. Lau

Experiments have been conducted to study steady heat transfer between two blockages with holes and pressure drop across the blockages, for turbulent flow in a rectangular channel. Average heat transfer coefficient and local heat transfer distribution on one of the channel walls between two blockages, and overall pressure drop across the blockages were obtained, for nine different staggered arrays of holes in the blockages and Reynolds numbers of 10,000 and 30,000. For the hole configurations studied, the blockages enhanced heat transfer by 4.6 to 8.1 times, but significantly increased the pressure drop. Smaller holes in the blockages caused higher heat transfer enhancement, but larger increase of the pressure drop than larger holes. The heat transfer enhancement was lower in the higher Reynolds number cases. Because of the large pressure drop, the heat transfer per unit pumping power was lower with the blockages than without the blockages. The local heat transfer was lower nearer the upstream blockage, the highest near the downstream blockage, and also relatively high in regions of reattachment of the jets leaving the upstream holes. The local heat transfer distribution was strongly dependent on the configuration of the hole array in the blockages. A third upstream blockage lowered both the heat transfer and the pressure drop, and significantly changed the local heat transfer distribution.


Sign in / Sign up

Export Citation Format

Share Document