Evaluation of interfacial mass transfer coefficient as a function of temperature and pressure in carbon dioxide/normal alkane systems

2014 ◽  
Vol 51 (4) ◽  
pp. 477-485 ◽  
Author(s):  
Fatemeh Nikkhou ◽  
Peyman Keshavarz ◽  
Shahab Ayatollahi ◽  
Iman Raoofi Jahromi ◽  
Ali Zolghadr
Author(s):  
Harish Ganapathy ◽  
Amir Shooshtari ◽  
Serguei Dessiatoun ◽  
Mohamed Alshehhi ◽  
Michael M. Ohadi

Natural gas in its originally extracted form comprises carbon dioxide and hydrogen sulfide as small, but non-negligible fractions of its dominant component, methane. Natural gas in the above form is typically subjected to a sweetening process that removes these acid gases. Microscale technologies have the potential to substantially enhance mass transport phenomena on account of their inherently high surface area to volume ratio. The present work reports the mass transfer characteristics during gas-liquid absorption in a microreactor. The absorption of CO2 mixed with N2 into aqueous diethanolamine was investigated in a single straight channel having a hydraulic diameter of 762 micrometer and circular cross-sectional geometry. The performance of the reactor was characterized with respect to the absorption efficiency and mass transfer coefficient. Close to 100% absorption efficiency was obtained under optimum operating conditions. Shorter channel lengths were observed to yield enhanced values of mass transfer coefficient on account of the improved utilization of the liquid reactants’ absorption capacity for a given reactor volume. In comparison to the 0.5 m long channel, the mass transfer coefficients with the 0.3 m and 0.1 m channels were higher on an average by 35.2% and 210%, respectively. Parametric studies investigating the effects of phase superficial velocity, liquid and gas phase concentration were performed. The mass transfer coefficients achieved using the present minichannel reactor were 1–3 orders of magnitude higher than that reported using conventional gas-liquid absorption systems.


2018 ◽  
Vol 24 (9) ◽  
pp. 51
Author(s):  
Basma Abbas Abdulmajeed ◽  
Arwa Raad Ibrahim

The present study addresses the behavior of gases in cultivation media as an essential factor to develop the relationship between the microorganisms that are present in the same environment. This relationship was explained via mass transfer of those gases to be a reasonable driving force in changing biological trends. Stripping and dissolution of oxygen and carbon dioxide in water and dairy wastewater were investigated in this study. Bubble column bioreactor under thermal control system was constructed and used for these processes. The experimental results showed that the removal of gases from the culture media requires more time than the dissolution. For example, the volumetric mass transfer coefficient for the removal of oxygen is 1.67 min-1 while the volumetric mass transfer coefficient for dissolution the same gas is 3.18 min-1. The same thing occurred with carbon dioxide, where the data showed that the volumetric mass transfer coefficient of the dissolution of CO2 is 0.66 min-1 while the volumetric mass transfer coefficient for removal process is 0.374 min-1. However, the two processes (dissolution and removal) with CO2 take more time than that with O2. Therefore, the production of gases due to metabolic processes in bacteria or microalgae remains in culture’s media for a certain period even if that media is sparged by air. Thus, this will give enough time for both microorganisms to consume those gases. Keywords: Bioreactor, mass transfer, microalgae, aerobic bacteria The present study addresses the behavior of gases in cultivation media as an essential factor to develop the relationship between the microorganisms that are present in the same environment. This relationship was explained via mass transfer of those gases to be a reasonable driving force in changing biological trends. Stripping and dissolution of oxygen and carbon dioxide in water and dairy wastewater were investigated in this study. Bubble column bioreactor under thermal control system was constructed and used for these processes. The experimental results showed that the removal of gases from the culture media requires more time than the dissolution. For example, the volumetric mass transfer coefficient for the removal of oxygen is 1.67 min-1 while the volumetric mass transfer coefficient for dissolution the same gas is 3.18 min-1. The same thing occurred with carbon dioxide, where the data showed that the volumetric mass transfer coefficient of the dissolution of CO2 is 0.66 min-1 while the volumetric mass transfer coefficient for removal process is 0.374 min-1. However, the two processes (dissolution and removal) with CO2 take more time than that with O2. Therefore, the production of gases due to metabolic processes in bacteria or microalgae remains in culture’s media for a certain period even if that media is sparged by air. Thus, this will give enough time for both microorganisms to consume those gases.  


Sign in / Sign up

Export Citation Format

Share Document