Experimental and numerical investigation of heat transfer for two-layered microchannel heat sink with non-uniform heat flux conditions

2015 ◽  
Vol 52 (9) ◽  
pp. 1755-1763 ◽  
Author(s):  
Shanglong Xu ◽  
Lili Yang ◽  
Yue Li ◽  
Yihao Wu ◽  
Xinglong Hu
Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Guy Lauriat

A numerical investigation on a single slot jet impinging in a porous parallel-plate channel containing an air-saturated high permeability porous medium is accomplished. The wall opposite the slot jet is partially heated at uniform heat flux and the buoyancy effects are taken into account. The fluid flow is assumed two dimensional, laminar and steady. The porous medium is modeled using the Brinkman–Forchheimer-extended Darcy model and the Boussinesq approximation. The local thermal non-equilibrium (LTNE) hypothesis is invoked. The results are discussed in terms of streamlines, fluid and solid phase temperature fields, wall temperature profiles and local and average Nusselt numbers. The porous medium allows a more significant heat transfer close to the end of the heated part of the plate. For low Peclet numbers, forced flow and natural convection are opposite and the mean Nusselt number shows a decrease in heat transfer, whereas they are aiding for high Peclet numbers. Porosity effects on the mean Nusselt numbers were found weak.


2021 ◽  
Vol 1163 ◽  
pp. 73-88
Author(s):  
Md Tanbir Sarowar

Microchannel heat sink plays a vital role in removing a considerable amount of heat flux from a small surface area from different electronic devices. In recent times, the rapid development of electronic devices requires the improvement of these heat sinks to a greater extent. In this aspect, the selection of appropriate substrate materials of the heat sinks is of vital importance. In this paper, three boron-based ultra-high temperature ceramic materials (ZrB2, TiB2, and HfB2) are compared as a substrate material for the microchannel heat sink using a numerical approach. The fluid flow and heat transfer are analyzed using the finite volume method. The results showed that the maximum temperature of the heat source didn’t exceed 355K at 3.6MWm-2 for any material. The results also indicated HfB2 and TiB2 to be more useful as a substrate material than ZrB2. By applying 3.6 MWm-2 heat flux at the source, the maximum obtained surface heat transfer coefficient was 175.2 KWm-2K-1 in a heat sink having substrate material HfB2.


Sign in / Sign up

Export Citation Format

Share Document