scholarly journals An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects

Author(s):  
Marek Kapitz ◽  
Stefan aus der Wiesche ◽  
Samir Kadic ◽  
Steffen Strehle

AbstractExperimental results are presented of a test of the theory of local turbulent heat transfer measurements proposed by Mocikat and Herwig in 2007. A miniaturized multi-layer heat transfer sensor was developed and employed in this study. The new heat transfer sensor was designed to work in air and liquids, and this capability enabled the simultaneous investigation of different Prandtl numbers. Two basic configurations, namely the flow past a blunt plate and the flow past an inclined square cylinder, were investigated in test sections of wind and water tunnels. Convective heat transfer coefficients were obtained through conventional testing (i.e., employing thoroughly heated test objects) and using the new miniaturized sensor approach (i.e., utilizing cold test objects without heating). The main prediction of the Mocikat-Herwig theory that a specific thermal adjustment coefficient of the employed actual miniaturized heat transfer sensor should exist in the fully turbulent flow regime was proven for developed two-dimensional flow. The observed effect of the Prandtl number on this coefficient was in good agreement with the prediction of the asymptotic expansion method. The square cylinder results indicated the inherent limits of the local turbulent heat transfer measurement approach, as suggested by Mocikat and Herwig.

1984 ◽  
Vol 106 (1) ◽  
pp. 55-63 ◽  
Author(s):  
P. Souza Mendes ◽  
E. M. Sparrow

A comprehensive experimental study was performed to determine entrance region and fully developed heat transfer coefficients, pressure distributions and friction factors, and patterns of fluid flow in periodically converging and diverging tubes. The investigated tubes consisted of a succession of alternately converging and diverging conical sections (i.e., modules) placed end to end. Systematic variations were made in the Reynolds number, the taper angle of the converging and diverging modules, and the module aspect ratio. Flow visualizations were performed using the oil-lampblack technique. A performance analysis comparing periodic tubes and conventional straight tubes was made using the experimentally determined heat transfer coefficients and friction factors as input. For equal mass flow rate and equal transfer surface area, there are large enhancements of the heat transfer coefficient for periodic tubes, with accompanying large pressure drops. For equal pumping power and equal transfer surface area, enhancements in the 30–60 percent range were encountered. These findings indicate that periodic converging-diverging tubes possess favorable enhancement characteristics.


2016 ◽  
Vol 804 ◽  
pp. 646-687 ◽  
Author(s):  
Ryoichi Kurose ◽  
Naohisa Takagaki ◽  
Atsushi Kimura ◽  
Satoru Komori

Turbulent heat transfer across a sheared wind-driven gas–liquid interface is investigated by means of a direct numerical simulation of gas–liquid two-phase turbulent flows under non-breaking wave conditions. The wind-driven wavy gas–liquid interface is captured using the arbitrary Lagrangian–Eulerian method with boundary-fitted coordinates on moving grids, and the temperature fields on both the gas and liquid sides, and the humidity field on the gas side are solved. The results show that although the distributions of the total, latent, sensible and radiative heat fluxes at the gas–liquid interface exhibit streak features such that low-heat-flux regions correspond to both low-streamwise-velocity regions on the gas side and high-streamwise-velocity regions on the liquid side, the similarity between the heat-flux streak and velocity streak on the gas side is more significant than that on the liquid side. This means that, under the condition of a fully developed wind-driven turbulent field on both the gas and liquid sides, the heat transfer across the sheared wind-driven gas–liquid interface is strongly affected by the turbulent eddies on the gas side, rather than by the turbulent eddies and Langmuir circulations on the liquid side. This trend is quite different from that of the mass transfer (i.e. $\text{CO}_{2}$ gas). This is because the resistance to heat transfer is normally lower than the resistance to mass transfer on the liquid side, and therefore the heat transfer is controlled by the turbulent eddies on the gas side. It is also verified that the predicted total heat, latent heat, sensible heat and enthalpy transfer coefficients agree well with previously measured values in both laboratory and field experiments. To estimate the heat transfer coefficients on both the gas and liquid sides, the surface divergence could be a useful parameter, even when Langmuir circulations exist.


Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n ◽  
Weihong Zhang ◽  
Esa Utriainen ◽  
Lieke Wang

Cooling methods are needed for gas turbine blade tips that are exposed to high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turn under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip lifetime. This paper presents numerical predictions of turbulent heat transfer through two-pass channels with and without guide ribs (guide vanes) placed in the turn regions using RANS turbulence modeling. The effects of adding guide ribs on the tip-wall heat transfer enhancement and the channel pressure drop have been analyzed. The inlet Reynolds numbers are ranging from 100,000 to 600,000, and the rib cross-section blockage ratio (rib height to channel height, 2e/H) is 0.182. The detailed fluid flow and heat transfer over the tip-wall are presented. The overall performances of three two-pass channels are evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide ribs are 20%∼50% higher than that of a channel without guide ribs. The presence of guide ribs could lead to an increased (about 15%) or decreased (up to about 12%) pressure drop, depending upon the geometry and placement of guide ribs. It is suggested that the usage of guide ribs is a suitable way to improve the flow structure and augment the blade tip heat transfer, but is not the most effective way to augment tip-wall heat transfer compared to the augmentation by surface modifications imposed on the tip directly.


1986 ◽  
Vol 108 (1) ◽  
pp. 16-23 ◽  
Author(s):  
D. S. Kadle ◽  
E. M. Sparrow

Heat transfer from an array of parallel longitudinal fins to a turbulent air stream passing through the interfin spaces has been investigated both analytically/numerically and experimentally. The fins were integrally attached to a heated base plate, while the fin tips were shrouded to avoid leakage. In the analytical/numerical work, a conjugate problem was solved which encompassed turbulent flow and heat transfer in the air stream and heat conduction in the fins and in the base plate. The turbulence model and computational scheme were verified by comparison with experiment. It was found that the local heat transfer coefficients varied along the fins and along the surface of the base plate, with the lowest values in the corners formed by the fin/base plate intersections and the fin/shroud intersections. The numerically determined fin efficiencies did not differ appreciably from those calculated from the conventional pure-conduction fin model. Average Nusselt numbers, evaluated from the experimental data in conjunction with the numerically determined fin efficiencies (for derating the fin surface area), agreed well with those for fully developed heat transfer in a uniformly heated circular tube.


1995 ◽  
Vol 117 (2) ◽  
pp. 316-322 ◽  
Author(s):  
K. Ichimiya

Experiments were conducted to determine the turbulent heat transfer and flow characteristics of an oblique impinging circular jet within closely confined walls using air as a working fluid. The local temperature distribution on the impingement surface was obtained in detail by a thermocamera using a liquid crystal sheet. A correction to the heat flux was evaluated by using the detailed temperature distribution and solving numerically the three-dimensional equation of heat conduction in the heated section. Two-dimensional profiles of the local Nusselt numbers and temperatures changed with jet angle and Reynolds number. These showed a peak shift toward the minor flow region and a plateau of the local heat transfer coefficients in the major flow region. The local velocity and turbulent intensity in the gap between the confined insulated wall and impingement surface were also obtained in detail by a thermal anemometer.


2021 ◽  
Author(s):  
Rajendra Prasad K S ◽  
Krishna V ◽  
Sachin Bharadwaj ◽  
Babu Rao Ponangi

Abstract Modelling of turbulence heat transfer for supercritical fluids using Computational Fluid Dynamics (CFD) software is always challenging due to the drastic property variations near critical point. Use of Artificial Neural Networks (ANN) along with numerical methods have shown promising results in predicting heat transfer coefficients of heat exchangers. In this study, accuracy of four different turbulent models available in the commercial CFD software - Ansys Fluent is investigated against the available experimental results. The k-e Re Normalization Group (RNG) model with enhanced wall treatment is found to be the best-suited turbulence model. Further, K-e RNG Turbulence Model is used in CFD for parametric analysis to generate the data for ANN studies. A total of 1,34,698 data samples were generated and fed into the ANN program to develop an equation that can predict the heat transfer coefficient. It was found that, for the considered range of values the absolute average relative deviation is 3.49%.


1983 ◽  
Vol 105 (3) ◽  
pp. 527-535 ◽  
Author(s):  
E. M. Sparrow ◽  
N. Cur

The effects of flow maldistribution caused by partial blockage of the inlet of a flat rectangular duct were studied experimentally. Local heat transfer coefficients were measured on the principal walls of the duct for two blockages and for Reynolds numbers spanning the range between 6000 and 30,000. Measurements were also made of the pressure distribution along the duct, and the fluid flow pattern was visualized by the oil-lampblack technique. Large spanwise nonuniformities of the local heat transfer coefficient were induced by the maldistributed flow. These nonuniformities persisted to far downstream locations, especially in the presence of severe inlet flow maldistributions. Spanwise-average heat transfer coefficients, evaluated from the local data, were found to be enhanced in the downstream portion of the duct due to the flow maldistribution. However, at more upstream locations, where the entering flow reattached to the duct wall following its separation at the sharp-edged inlet, the average coefficients were reduced by the presence of the maldistribution.


Sign in / Sign up

Export Citation Format

Share Document