scholarly journals Suitable Spaces for Shape Optimization

Author(s):  
Kathrin Welker

AbstractThe differential-geometric structure of the manifold of smooth shapes is applied to the theory of shape optimization problems. In particular, a Riemannian shape gradient with respect to the first Sobolev metric and the Steklov–Poincaré metric are defined. Moreover, the covariant derivative associated with the first Sobolev metric is deduced in this paper. The explicit expression of the covariant derivative leads to a definition of the Riemannian shape Hessian with respect to the first Sobolev metric. In this paper, we give a brief overview of various optimization techniques based on the gradients and the Hessian. Since the space of smooth shapes limits the application of the optimization techniques, this paper extends the definition of smooth shapes to $$H^{1/2}$$ H 1 / 2 -shapes, which arise naturally in shape optimization problems. We define a diffeological structure on the new space of $$H^{1/2}$$ H 1 / 2 -shapes. This can be seen as a first step towards the formulation of optimization techniques on diffeological spaces.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
R. Mukesh ◽  
K. Lingadurai ◽  
U. Selvakumar

The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO), are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer.


2021 ◽  
Vol 26 (2) ◽  
pp. 34
Author(s):  
Isaac Gibert Martínez ◽  
Frederico Afonso ◽  
Simão Rodrigues ◽  
Fernando Lau

The objective of this work is to study the coupling of two efficient optimization techniques, Aerodynamic Shape Optimization (ASO) and Topology Optimization (TO), in 2D airfoils. To achieve such goal two open-source codes, SU2 and Calculix, are employed for ASO and TO, respectively, using the Sequential Least SQuares Programming (SLSQP) and the Bi-directional Evolutionary Structural Optimization (BESO) algorithms; the latter is well-known for allowing the addition of material in the TO which constitutes, as far as our knowledge, a novelty for this kind of application. These codes are linked by means of a script capable of reading the geometry and pressure distribution obtained from the ASO and defining the boundary conditions to be applied in the TO. The Free-Form Deformation technique is chosen for the definition of the design variables to be used in the ASO, while the densities of the inner elements are defined as design variables of the TO. As a test case, a widely used benchmark transonic airfoil, the RAE2822, is chosen here with an internal geometric constraint to simulate the wing-box of a transonic wing. First, the two optimization procedures are tested separately to gain insight and then are run in a sequential way for two test cases with available experimental data: (i) Mach 0.729 at α=2.31°; and (ii) Mach 0.730 at α=2.79°. In the ASO problem, the lift is fixed and the drag is minimized; while in the TO problem, compliance minimization is set as the objective for a prescribed volume fraction. Improvements in both aerodynamic and structural performance are found, as expected: the ASO reduced the total pressure on the airfoil surface in order to minimize drag, which resulted in lower stress values experienced by the structure.


2021 ◽  
Vol 10 (7) ◽  
pp. 426
Author(s):  
Tingting Lan ◽  
Danyang Qin ◽  
Guanyu Sun

In recent years, due to the strong mobility, easy deployment, and low cost of unmanned aerial vehicles (UAV), great interest has arisen in utilizing UAVs to assist in wireless communication, especially for on-demand deployment in emergency situations and temporary events. However, UAVs can only provide users with data transmission services through wireless backhaul links established with a ground base station, and the limited capacity of the wireless backhaul link would limit the transmission speed of UAVs. Therefore, this paper designed a UAV-assisted wireless communication system that used cache technology and realized the transmission of multi-user data by using the mobility of UAVs and wireless cache technology. Considering the limited storage space and energy of UAVs, the joint optimization problem of the UAV’s trajectory, cache placement, and transmission power was established to minimize the mission time of the UAV. Since this problem was a non-convex problem, it was decomposed into three sub-problems: trajectory optimization, cache placement optimization, and power allocation optimization. An iterative algorithm based on the successive convex approximation and alternate optimization techniques was proposed to solve these three optimization problems. Finally, in the power allocation optimization, the proposed algorithm was improved by changing the optimization objective function. Numerical results showed that the algorithm had good performance and could effectively reduce the task completion time of the UAV.


Author(s):  
Ihar Antonau ◽  
Majid Hojjat ◽  
Kai-Uwe Bletzinger

AbstractIn node-based shape optimization, there are a vast amount of design parameters, and the objectives, as well as the physical constraints, are non-linear in state and design. Robust optimization algorithms are required. The methods of feasible directions are widely used in practical optimization problems and know to be quite robust. A subclass of these methods is the gradient projection method. It is an active-set method, it can be used with equality and non-equality constraints, and it has gained significant popularity for its intuitive implementation. One significant issue around efficiency is that the algorithm may suffer from zigzagging behavior while it follows non-linear design boundaries. In this work, we propose a modification to Rosen’s gradient projection algorithm. It includes the efficient techniques to damp the zigzagging behavior of the original algorithm while following the non-linear design boundaries, thus improving the performance of the method.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Sebastian Blauth ◽  
Christian Leithäuser ◽  
René Pinnau

AbstractWe consider the optimization of a chemical microchannel reactor by means of PDE-constrained optimization techniques, using the example of the Sabatier reaction. To model the chemically reacting flow in the microchannels, we introduce a three- and a one-dimensional model. As these are given by strongly coupled and highly nonlinear systems of partial differential equations (PDEs), we present our software package cashocs which implements the adjoint approach and facilitates the numerical solution of the subsequent optimization problems. We solve a parameter identification problem numerically to determine necessary kinetic parameters for the models from experimental data given in the literature. The obtained results show excellent agreement to the measurements. Finally, we present two optimization problems for optimizing the reactor’s product yield. First, we use a tracking-type cost functional to maximize the reactant conversion, keep the flow rate of the reactor fixed, and use its wall temperature as optimization variable. Second, we consider the wall temperature and the inlet gas velocity as optimization variables, use an objective functional for maximizing the flow rate in the reactor, and ensure the quality of the product by means of a state constraint. The results obtained from solving these problems numerically show great potential for improving the design of the microreactor.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-26
Author(s):  
Faramarz Khosravi ◽  
Alexander Rass ◽  
Jürgen Teich

Real-world problems typically require the simultaneous optimization of multiple, often conflicting objectives. Many of these multi-objective optimization problems are characterized by wide ranges of uncertainties in their decision variables or objective functions. To cope with such uncertainties, stochastic and robust optimization techniques are widely studied aiming to distinguish candidate solutions with uncertain objectives specified by confidence intervals, probability distributions, sampled data, or uncertainty sets. In this scope, this article first introduces a novel empirical approach for the comparison of candidate solutions with uncertain objectives that can follow arbitrary distributions. The comparison is performed through accurate and efficient calculations of the probability that one solution dominates the other in terms of each uncertain objective. Second, such an operator can be flexibly used and combined with many existing multi-objective optimization frameworks and techniques by just substituting their standard comparison operator, thus easily enabling the Pareto front optimization of problems with multiple uncertain objectives. Third, a new benchmark for evaluating uncertainty-aware optimization techniques is introduced by incorporating different types of uncertainties into a well-known benchmark for multi-objective optimization problems. Fourth, the new comparison operator and benchmark suite are integrated into an existing multi-objective optimization framework that features a selection of multi-objective optimization problems and algorithms. Fifth, the efficiency in terms of performance and execution time of the proposed comparison operator is evaluated on the introduced uncertainty benchmark. Finally, statistical tests are applied giving evidence of the superiority of the new comparison operator in terms of \epsilon -dominance and attainment surfaces in comparison to previously proposed approaches.


1996 ◽  
Vol 4 (1) ◽  
pp. 1-32 ◽  
Author(s):  
Zbigniew Michalewicz ◽  
Marc Schoenauer

Evolutionary computation techniques have received a great deal of attention regarding their potential as optimization techniques for complex numerical functions. However, they have not produced a significant breakthrough in the area of nonlinear programming due to the fact that they have not addressed the issue of constraints in a systematic way. Only recently have several methods been proposed for handling nonlinear constraints by evolutionary algorithms for numerical optimization problems; however, these methods have several drawbacks, and the experimental results on many test cases have been disappointing. In this paper we (1) discuss difficulties connected with solving the general nonlinear programming problem; (2) survey several approaches that have emerged in the evolutionary computation community; and (3) provide a set of 11 interesting test cases that may serve as a handy reference for future methods.


2018 ◽  
Vol 246 ◽  
pp. 01003
Author(s):  
Xinyuan Liu ◽  
Yonghui Zhu ◽  
Lingyun Li ◽  
Lu Chen

Apart from traditional optimization techniques, e.g. progressive optimality algorithm (POA), modern intelligence algorithms, like genetic algorithms, differential evolution have been widely used to solve optimization problems. This paper deals with comparative analysis of POA, GA and DE and their applications in a reservoir operation problem. The results show that both GA and DES are feasible to reservoir operation optimization, but they display different features. GA and DE have many parameters and are difficult in determination of these parameter values. For simple problems with mall number of decision variables, GA and DE are better than POA when adopting appropriate parameter values and constraint handling methods. But for complex problem with large number of variables, POA combined with simplex method are much superior to GA and DE in time-assuming and quality of optimal solutions. This study helps to select proper optimization algorithms and parameter values in reservoir operation.


Sign in / Sign up

Export Citation Format

Share Document