Screening of cancer predisposition syndromes

Author(s):  
Haifa Al-Sarhani ◽  
Ravi V. Gottumukkala ◽  
Angelo Don S. Grasparil ◽  
Eric L. Tung ◽  
Michael S. Gee ◽  
...  
2006 ◽  
Vol 175 (4S) ◽  
pp. 317-317
Author(s):  
Xifeng Wu ◽  
Jian Gu ◽  
H. Barton Grossman ◽  
Christopher I. Amos ◽  
Carol Etzel ◽  
...  

2021 ◽  
Vol 214 (7) ◽  
pp. 335
Author(s):  
Nicholas Leedman ◽  
Murray Princehorn ◽  
Nicholas Gottardo ◽  
Claire Franklin ◽  
Rebecca D'Souza ◽  
...  

Author(s):  
Georgina M. Schlub ◽  
Ashley Crook ◽  
Kristine Barlow‐Stewart ◽  
Jane Fleming ◽  
Judy Kirk ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Louisa Lepkes ◽  
Mohamad Kayali ◽  
Britta Blümcke ◽  
Jonas Weber ◽  
Malwina Suszynska ◽  
...  

The identification of germline copy number variants (CNVs) by targeted next-generation sequencing (NGS) frequently relies on in silico CNV prediction tools with unknown sensitivities. We investigated the performances of four in silico CNV prediction tools, including one commercial (Sophia Genetics DDM) and three non-commercial tools (ExomeDepth, GATK gCNV, panelcn.MOPS) in 17 cancer predisposition genes in 4208 female index patients with familial breast and/or ovarian cancer (BC/OC). CNV predictions were verified via multiplex ligation-dependent probe amplification. We identified 77 CNVs in 76 out of 4208 patients (1.81%); 33 CNVs were identified in genes other than BRCA1/2, mostly in ATM, CHEK2, and RAD51C and less frequently in BARD1, MLH1, MSH2, PALB2, PMS2, RAD51D, and TP53. The Sophia Genetics DDM software showed the highest sensitivity; six CNVs were missed by at least one of the non-commercial tools. The positive predictive values ranged from 5.9% (74/1249) for panelcn.MOPS to 79.1% (72/91) for ExomeDepth. Verification of in silico predicted CNVs is required due to high frequencies of false positive predictions, particularly affecting target regions at the extremes of the GC content or target length distributions. CNV detection should not be restricted to BRCA1/2 due to the relevant proportion of CNVs in further BC/OC predisposition genes.


2021 ◽  
Author(s):  
Anna Byrjalsen ◽  
Illja J. Diets ◽  
Jette Bakhuizen ◽  
Thomas van Overeem Hansen ◽  
Kjeld Schmiegelow ◽  
...  

AbstractIncreasing use of genomic sequencing enables standardized screening of all childhood cancer predisposition syndromes (CPS) in children with cancer. Gene panels currently used often include adult-onset CPS genes and genes without substantial evidence linking them to cancer predisposition. We have developed criteria to select genes relevant for childhood-onset CPS and assembled a gene panel for use in children with cancer. We applied our criteria to 381 candidate genes, which were selected through two in-house panels (n = 338), a literature search (n = 39), and by assessing two Genomics England’s PanelApp panels (n = 4). We developed evaluation criteria that determined a gene’s eligibility for inclusion on a childhood-onset CPS gene panel. These criteria assessed (1) relevance in childhood cancer by a minimum of five childhood cancer patients reported carrying a pathogenic variant in the gene and (2) evidence supporting a causal relation between variants in this gene and cancer development. 138 genes fulfilled the criteria. In this study we have developed criteria to compile a childhood cancer predisposition gene panel which might ultimately be used in a clinical setting, regardless of the specific type of childhood cancer. This panel will be evaluated in a prospective study. The panel is available on (pediatric-cancer-predisposition-genepanel.nl) and will be regularly updated.


2006 ◽  
Vol 27 (8) ◽  
pp. 1444-1452 ◽  
Author(s):  
Jérémie Weber ◽  
Rachelle Looten ◽  
Claude Houdayer ◽  
Dominique Stoppa-Lyonnet ◽  
Jean-Louis Viovy

Sign in / Sign up

Export Citation Format

Share Document