The Under-explored Extracellular Proteome of Aero-Terrestrial Microalgae Provides Clues on Different Mechanisms of Desiccation Tolerance in Non-Model Organisms

2020 ◽  
Author(s):  
María González-Hourcade ◽  
Eva M. del Campo ◽  
Leonardo M. Casano
2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


1992 ◽  
Vol 85 (4) ◽  
pp. 581-588 ◽  
Author(s):  
Olivier Leprince ◽  
Adrie van der Werf ◽  
Roger Deltour ◽  
Hans Lambers

2018 ◽  
Vol 51 (1) ◽  
Author(s):  
Abdul Majeed Baloch ◽  
Tongtong Zhai ◽  
Abdul Wahid Baloch ◽  
Zhihua Liu ◽  
Xingtang Yang ◽  
...  

2013 ◽  
Vol 35 (8) ◽  
pp. 955-970 ◽  
Author(s):  
Hong-Liang LIU ◽  
Li-Ming ZHENG ◽  
Qing-Qing LIU ◽  
Fu-Sheng QUAN ◽  
Yong ZHANG
Keyword(s):  

2016 ◽  
Vol 23 (41) ◽  
pp. 4639-4680 ◽  
Author(s):  
Kathrin Pallauf ◽  
Gerald Rimbach ◽  
Petra Maria Rupp ◽  
Dawn Chin ◽  
Insa M.A. Wolf
Keyword(s):  

2000 ◽  
Vol 1 (2) ◽  
pp. 189-199
Author(s):  
F. Thomas ◽  
C. Neri

Sign in / Sign up

Export Citation Format

Share Document