A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape

2009 ◽  
Vol 39 (3) ◽  
pp. 405-414 ◽  
Author(s):  
Emre Brookes ◽  
Weiming Cao ◽  
Borries Demeler
Author(s):  
H.A. Cohen ◽  
W. Chiu ◽  
J. Hosoda

GP 32 (molecular weight 35000) is a T4 bacteriophage protein that destabilizes the DNA helix. The fragment GP32*I (77% of the total weight), which destabilizes helices better than does the parent molecule, crystallizes as platelets thin enough for electron diffraction and electron imaging. In this paper we discuss the structure of this protein as revealed in images reconstructed from stained and unstained crystals.Crystals were prepared as previously described. Crystals for electron microscopy were pelleted from the buffer suspension, washed in distilled water, and resuspended in 1% glucose. Two lambda droplets were placed on grids over freshly evaporated carbon, allowed to sit for five minutes, and then were drained. Stained crystals were prepared the same way, except that prior to draining the droplet, two lambda of aqueous 1% uranyl acetate solution were applied for 20 seconds. Micrographs were produced using less than 2 e/Å2 for unstained crystals or less than 8 e/Å2 for stained crystals.


1984 ◽  
Vol 99 (4) ◽  
pp. 1372-1378 ◽  
Author(s):  
K A Resing ◽  
K A Walsh ◽  
B A Dale

A major event in the keratinization of epidermis is the production of the histidine-rich protein filaggrin (26,000 mol wt) from its high molecular weight (greater than 350,000) phosphorylated precursor (profilaggrin). We have identified two nonphosphorylated intermediates (60,000 and 90,000 mol wt) in NaSCN extracts of epidermis from C57/Bl6 mice by in vivo pulse-chase studies. Results of peptide mapping using a two-dimensional technique suggest that these intermediates consist of either two or three copies of filaggrin domains. Each of the intermediates has been purified. The ratios of amino acids in the purified components are unusual and essentially identical. The data are discussed in terms of a precursor containing tandem repeats of similar domains. In vivo pulse-chase experiments demonstrate that the processing of the high molecular weight phosphorylated precursor involves dephosphorylation and proteolytic steps through three-domain and two-domain intermediates to filaggrin. These processing steps appear to occur as the cell goes through the transition cell stage to form a cornified cell.


Sign in / Sign up

Export Citation Format

Share Document