Helicity‐ and Molecular‐Weight‐Driven Self‐Sorting and Assembly of Helical Polymers towards Two‐Dimensional Smectic Architectures and Selectively Adhesive Gels

Author(s):  
Yan‐Xiang Li ◽  
Lei Xu ◽  
Shu‐Ming Kang ◽  
Li Zhou ◽  
Na Liu ◽  
...  
Author(s):  
H.A. Cohen ◽  
W. Chiu ◽  
J. Hosoda

GP 32 (molecular weight 35000) is a T4 bacteriophage protein that destabilizes the DNA helix. The fragment GP32*I (77% of the total weight), which destabilizes helices better than does the parent molecule, crystallizes as platelets thin enough for electron diffraction and electron imaging. In this paper we discuss the structure of this protein as revealed in images reconstructed from stained and unstained crystals.Crystals were prepared as previously described. Crystals for electron microscopy were pelleted from the buffer suspension, washed in distilled water, and resuspended in 1% glucose. Two lambda droplets were placed on grids over freshly evaporated carbon, allowed to sit for five minutes, and then were drained. Stained crystals were prepared the same way, except that prior to draining the droplet, two lambda of aqueous 1% uranyl acetate solution were applied for 20 seconds. Micrographs were produced using less than 2 e/Å2 for unstained crystals or less than 8 e/Å2 for stained crystals.


1984 ◽  
Vol 99 (4) ◽  
pp. 1372-1378 ◽  
Author(s):  
K A Resing ◽  
K A Walsh ◽  
B A Dale

A major event in the keratinization of epidermis is the production of the histidine-rich protein filaggrin (26,000 mol wt) from its high molecular weight (greater than 350,000) phosphorylated precursor (profilaggrin). We have identified two nonphosphorylated intermediates (60,000 and 90,000 mol wt) in NaSCN extracts of epidermis from C57/Bl6 mice by in vivo pulse-chase studies. Results of peptide mapping using a two-dimensional technique suggest that these intermediates consist of either two or three copies of filaggrin domains. Each of the intermediates has been purified. The ratios of amino acids in the purified components are unusual and essentially identical. The data are discussed in terms of a precursor containing tandem repeats of similar domains. In vivo pulse-chase experiments demonstrate that the processing of the high molecular weight phosphorylated precursor involves dephosphorylation and proteolytic steps through three-domain and two-domain intermediates to filaggrin. These processing steps appear to occur as the cell goes through the transition cell stage to form a cornified cell.


1989 ◽  
Vol 40 (3) ◽  
pp. 675 ◽  
Author(s):  
DJ Tucker ◽  
AHF Hudson ◽  
A Laudani ◽  
RC Marshall ◽  
DE Rivett

The proteins from a range of cashmere, mohair, angoratcashmere crossbred and wool fibre samples were extracted at pH 8 with 8 M urea containing dithiothreitol, and were then radiolabelled by S-carboxymethylation using iodo(2-14C) acetate. The proteins from each sample were examined by two dimensional polyacrylamide gel electrophoresis in which the separation in the first dimension was according to charge at pH 8.9 and in the second dimension according to apparent molecular weight in the presence of sodium dodecyl sulfate. After electrophoresis the proteins were detected by fluorography. Protein differences in keratin samples from some individual goats existed, although the overall protein patterns were similar. None of the differences were consistent with any one goat fibre type. The protein patterns obtained for fibre samples from individual cashmere goats showed some differences when compared to those found for commercial blends from the same country of origin, indicating that blending can mask any animal-to-animal variation. While the electrophoretic technique does not unequivocally distinguish between cashmere, mohair and angora/cashmere crossbred fibres it does differentiate between wool and goat fibres.


1980 ◽  
Vol 86 (1) ◽  
pp. 315-325 ◽  
Author(s):  
A R Strauch ◽  
E J Luna ◽  
J R LaFountain

A biochemical assay employing DNase-I affinity chromatography, two-dimensional peptide analysis and SDS polyacrylamide gel electrophoresis was used to isolate, identify, and assess the amount of actin from gonial cells of the crane fly, Nephrotoma suturalis. Based on the analysis of cell homogenates under conditions in which all cellular actin is converted to the monomeric DNase-binding form, actin comprises approximately 1% of the total protein in homogenates of spermatocytes and spermatids. SDS gel analysis of mature sperm reveals no polypeptides with a molecular weight similar to that of actin. Under conditions that preserve native supramolecular states of actin, approximately 80% of the spermatocyte actin is in a sedimentable form whereas only approximately 30% of the spermatid actin is sedimentable. These differences could be meaningful with regard to strutural changes that occur during spermiogenesis. A comparative analysis of two-dimensional peptide maps of several radioiodinated actins reveals similarities among spermatocyte, spermatid, and human erythrocyte actins. The results suggest the general applicability of this approach to other cell types that contain limited amounts of actin.


The Analyst ◽  
2019 ◽  
Vol 144 (12) ◽  
pp. 3746-3755
Author(s):  
Yilan Ouyang ◽  
Meng Zhu ◽  
Xin Wang ◽  
Lin Yi ◽  
Jawed Fareed ◽  
...  

Enoxaparin, one of the most important low-molecular-weight heparins (LMWHs), is widely used as a clinical anticoagulant.


1986 ◽  
Vol 64 (12) ◽  
pp. 1317-1325 ◽  
Author(s):  
Eleonora Altman ◽  
Jean-Robert Brisson ◽  
Malcolm B. Perry

By phenol-water extraction an aqueous-phase soluble cellular lipopolysaccharide was isolated from Haemophilus pleuropneumoniae serotype 1. It was shown by sodium dodecyl sulfate – polyacrylamide gel electrophoresis, hydrolysis, methylation, and both one- and two-dimensional 1H and 13C nuclear magnetic resonance studies to be an S-type lipopolysaccharide, which could be cleaved to yield a lipid A and an O-chain polysaccharide identified as a high molecular weight branched polymer of a tetrasaccharide repeating unit having the structure:[Formula: see text]


Sign in / Sign up

Export Citation Format

Share Document