scholarly journals Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development

2012 ◽  
Vol 96 (5) ◽  
pp. 1191-1200 ◽  
Author(s):  
Masato Ikeda
Author(s):  
Małgorzata Robak ◽  

Despite many studies, the “check points” of metabolic regulation of citric acid (CA) secretion by the yeasts Y.lipolytica still remain unknown. In this manuscript, some possible aspects of strain dependent secretion as well as CA metabolism regulation were discussed. Keys enzymes’ activities, substrate concentration, affinity of the uptake systems, intracellular CA concentration and strains abilities were the main points taken into consideration. The direction for the future studies emerged from this review, mainly connected to cellular and mitochondrial citrate transport systems and cellular substrates transporters (glucose, fructose, glycerol, ethanol and acetate), give promising starting point for future efficient strain development.


1999 ◽  
Vol 181 (12) ◽  
pp. 3695-3704 ◽  
Author(s):  
Smadar Shulami ◽  
Orit Gat ◽  
Abraham L. Sonenshein ◽  
Yuval Shoham

ABSTRACT A λ-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting β-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a β-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of α-d-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-α-(4-O-methyl-α-d-glucuronosyl)-xylotriose] (MeGlcUAXyl3). The following two genes code for an intracellular α-glucuronidase (aguA) and a β-xylosidase (xynB). Five more genes (kdgK,kdgA, uxaC, uxuA, anduxuB) encode proteins that are homologous to enzymes involved in galacturonate and glucuronate catabolism. The gene cluster also includes a potential regulatory gene, uxuR, the product of which resembles repressors of the GntR family. The apparent transcriptional start point of the cluster was determined by primer extension analysis and is located 349 bp from the initial ATG codon. The potential operator site is a perfect 12-bp inverted repeat located downstream from the promoter between nucleotides +170 and +181. Gel retardation assays indicated that UxuR binds specifically to this sequence and that this binding is efficiently prevented in vitro by MeGlcUAXyl3, the most likely molecular inducer.


2016 ◽  
Vol 62 (12) ◽  
pp. 983-992 ◽  
Author(s):  
Jianzhong Xu ◽  
Junlan Zhang ◽  
Dongdong Liu ◽  
Weiguo Zhang

The phosphoenolpyruvate:glucose phosphotransferase system (PTSGlc) is the major pathway of glucose uptake in Corynebacterium glutamicum. This study investigated glucose consumption rate, cell growth, and metabolite changes resulting from modification of PTSGlc. The classical l-lysine producer C. glutamicum XQ-8 exhibited low glucose consumption, cell growth, and l-lysine production rates, whereas these parameters were significantly increased during cultivating on glucose plus maltose, through inactivation of SugR, or by overexpression of PTSGlc genes. XQ-8sugR::cat/pDXW-8-ptsI exhibited the highest increase in glucose consumption, growth rate, and l-lysine production, followed by XQ-8sugR::cat/pDXW-8-ptsG. However, overexpression of ptsH had little effect on the above-mentioned factors. Although co-overexpression of ptsGHI led to the highest glucose consumption, growth rate, and final l-lysine production; the l-lysine production rate was lower than that of XQ-8sugR::cat/pDXW-8-ptsIH. In fed-batch fermentation, XQ-8sugR::cat/pDXW-8-ptsIH had a higher growth rate of 0.54 h−1 to a dry cell mass of 66 g·L−1 after 16 h, and had a higher l-lysine production rate of 159.2 g·L−1 after 36 h. These results indicate that modification of the sugar transport systems improves amino acid production, especially for mutants obtained by repeated physical and (or) chemical mutagenesis. However, modification of these systems needs to be performed on a case-by-case basis.


2016 ◽  
Vol 33 ◽  
pp. S66
Author(s):  
Jennifer Antfang ◽  
Lothar Eggeling ◽  
Michael Bott ◽  
Jan Marienhagen

Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Shou-Chen Lo ◽  
Chieh-Chen Huang

Hungateiclostridium thermocellum ATCC 27405 is a promising bacterium with a robust ability to degrade lignocellulosic biomass complexes, including crystalline cellulose components, through a multienzyme cellulosomal system. In contrast, it exhibits poor growth on simple monosaccharides such as fructose and glucose. This phenomenon raises many important questions concerning its glycolytic pathways and sugar transport systems. Until now, the detailed mechanisms of H. thermocellum adaptation to growth on monosaccharides have been poorly explored. In this study, adaptive laboratory evolution was applied to train the bacterium on monosaccharides, and genome resequencing was used to detect the genes that had mutated during adaptation. RNA-seq data of the 1st-generation culture growing on either fructose or glucose revealed that several glycolytic genes in the EMP pathway were expressed at lower levels in these cells than in cellobiose-grown cells. After 8 generations of culture on fructose and glucose, the evolved H. thermocellum strains grew faster and yielded greater biomass than the nonadapted strains. Genomic screening also revealed several mutation events in the genomes of the evolved strains, especially in genes responsible for sugar transport and central carbon metabolism. Consequently, these genes could be applied as targets for further metabolic engineering to improve this bacterium for bioindustrial usage.


1988 ◽  
Vol 939 (3) ◽  
pp. 569-576 ◽  
Author(s):  
Adriaan W. De Bruijne ◽  
Johanna Schuddemat ◽  
Peter J.A. Van den Broek ◽  
Johnny Van Steveninck

Sign in / Sign up

Export Citation Format

Share Document