New PCR primers based on mcrA gene for retrieving more anaerobic methanotrophic archaea from coastal reedbed sediments

2014 ◽  
Vol 98 (10) ◽  
pp. 4663-4670 ◽  
Author(s):  
Zhichao Zhou ◽  
Ping Han ◽  
Ji-Dong Gu
Keyword(s):  
2006 ◽  
Vol 157 (10) ◽  
pp. 914-921 ◽  
Author(s):  
Heli Juottonen ◽  
Pierre E. Galand ◽  
Kim Yrjälä

2011 ◽  
Vol 135-136 ◽  
pp. 408-413 ◽  
Author(s):  
Nguyen Ngoc Tuan ◽  
Shir Ly Huang

Methanogens play an important role to carbon cycling, catalyzing the production of methane and carbon dioxide, both potent green house gases, during organic matter degradation in anaerobic environments. Therefore, it is necessary to better understand microorganisms that produce natural gas. Indeed, methanogens are difficult to perform through culture based methods. In addition, the culture independent methods using the 16S rRNA gene also revealed some disadvantages. For these reasons, the culture independent molecular techniques using the specific catabolic genes such as methyl coenzyme M reductase (MCR) were studied. In this study, a primer set which can amplify specific fragments from a wide variety of mcrA gene was designed based on the homologous regions of 100 mcrA genes listed in the GenBank. PCR with the mcrA primers amplified DNA fragments of the expected size from all the six samples which obtained from biogas production reactors. In addition, denaturing gradient gel electrophoresis PCR analysis using our designed primers also revealed the diversity of mcrA gene in each sample. These results revealed that our primers were successfully to detect the mcrA genes and it is also helpful to know the diversity of mcrA genes in methanogen communities.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 514e-514
Author(s):  
James M. Bradeen ◽  
Philipp W. Simon

The amplified fragment length polymorphism (AFLP) is a powerful marker, allowing rapid and simultaneous evaluation of multiple potentially polymorphic sites. Although well-adapted to linkage mapping and diversity assessment, AFLPs are primarily dominant in nature. Dominance, relatively high cost, and technological difficulty limit use of AFLPs for marker-aided selection and other locus-specific applications. In carrot the Y2 locus conditions carotene accumulation in the root xylem. We identified AFLP fragments linked to the dominant Y2 allele and pursued conversion of those fragments to codominant, PCR-based forms useful for locus-specific applications. The short length of AFLPs (≈60 to 500 bp) precludes development of longer, more specific primers as in SCAR development. Instead, using sequence information from cloned AFLP fragments for primer design, regions outside of the original fragment were amplified by inverse PCR or ligation-mediated PCR, cloned, and sequenced. Differences in sequences associated with Y2 vs. y2 allowed development of simple PCR assays differentiating those alleles. PCR primers flanking an insertion associated with the recessive allele amplified differently sized products for the two Y2 alleles in one assay. This assay is rapid, technologically simple (requiring no radioactivity and little advanced training or equipment), reliable, inexpensive, and codominant. Our PCR assay has a variety of large scale, locus-specific applications including genotyping diverse carrot cultivars and wild and feral populations. Efforts are underway to improve upon conversion technology and to more extensively test the techniques we have developed.


Author(s):  
N. S. Dangar ◽  
G. M. Pandya ◽  
U. V. Ramani ◽  
Y. D. Padheriya ◽  
T. Sangma ◽  
...  

The Surti is a dual purpose goat breed of Gujarat. The bone morphogenetic protein receptor type 1B (BMPR1B) gene of transforming growth factor beta (TGF-β) superfamily ligands is playing a role in ovulation as well as litter size. Mutation in Exon-6 region of BMPR1B gene with base size 190 bp reported increasing litter size. Based on the known mutation information in goat and sheep, PCR primers were designed to screen polymorphism in total 100 Surti goats, 50 Surti goats from University Farm, Navsari and 50 Surti goats from field units of Southern part of Gujarat. During PCR-RFLP study no polymorphic sites were found for Exon-6 region of BMPR1B on Surti goats. Moreover, the twinning rate was 10% in first parity and higher in subsequent second (62.5%) and third (76.8%) parties.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1489
Author(s):  
Tammy Stackhouse ◽  
Sumyya Waliullah ◽  
Alfredo D. Martinez-Espinoza ◽  
Bochra Bahri ◽  
Emran Ali

Dollar spot is one of the most destructive diseases in turfgrass. The causal agents belong to the genus Clarireedia, which are known for causing necrotic, sunken spots in turfgrass that coalesce into large damaged areas. In low tolerance settings like turfgrass, it is of vital importance to rapidly detect and identify the pathogens. There are a few methods available to identify the genus Clarireedia, but none of those are rapid enough and characterize down to the species level. This study produced a co-dominant cleaved amplified polymorphic sequences (CAPS) test that differentiates between C. jacksonii and C. monteithiana, the two species that cause dollar spot disease within the United States. The calmodulin gene (CaM) was targeted to generate Clarireedia spp. specific PCR primers. The CAPS assay was optimized and tested for specificity and sensitivity using DNA extracted from pure cultures of two Clarireedia spp. and other closely related fungal species. The results showed that the newly developed primer set could amplify both species and was highly sensitive as it detected DNA concentrations as low as 0.005 ng/µL. The assay was further validated using direct PCR to speed up the diagnosis process. This drastically reduces the time needed to identify the dollar spot pathogens. The resulting assay could be used throughout turfgrass settings for a rapid and precise identification method in the US.


2019 ◽  
Vol 82 (2) ◽  
pp. 325-330 ◽  
Author(s):  
WANWAN LIU ◽  
XIAONAN WANG ◽  
JING TAO ◽  
BANGSHENG XI ◽  
MAN XUE ◽  
...  

ABSTRACT This study aimed to establish a multiplex PCR detection system mediated by “universal primers,” which would be able to determine whether mutton meat contained nonmutton ingredients from rats, foxes, and ducks. Based on the sequence variation of specific mitochondrial genes, nine different multiplex PCR primers were designed, and four kinds of meat products were rapidly identified by electrophoresis using an optimized multiplex PCR system based on the molecular weight differences of the amplified products. Multiplex PCR applications optimized for meat food source from food samples for testing was used to verify the accuracy of the identification method. The results showed that the primers in multiple PCR system mediated by universal primers could be used for the rapid identification of rat, fox, duck, and sheep meat in mutton products, and the detection sensitivity could reach 0.05 ng/μL. The identification of food samples validated the practical value of this method. Therefore, a multiplex PCR system mediated by universal primers was established, which can be used to quickly identify the origin of animal ingredients from rats, foxes, and ducks in mutton products.


Sign in / Sign up

Export Citation Format

Share Document