scholarly journals Development of a Co-Dominant Cleaved Amplified Polymorphic Sequences Assay for the Rapid Detection and Differentiation of Two Pathogenic Clarireedia spp. Associated with Dollar Spot in Turfgrass

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1489
Author(s):  
Tammy Stackhouse ◽  
Sumyya Waliullah ◽  
Alfredo D. Martinez-Espinoza ◽  
Bochra Bahri ◽  
Emran Ali

Dollar spot is one of the most destructive diseases in turfgrass. The causal agents belong to the genus Clarireedia, which are known for causing necrotic, sunken spots in turfgrass that coalesce into large damaged areas. In low tolerance settings like turfgrass, it is of vital importance to rapidly detect and identify the pathogens. There are a few methods available to identify the genus Clarireedia, but none of those are rapid enough and characterize down to the species level. This study produced a co-dominant cleaved amplified polymorphic sequences (CAPS) test that differentiates between C. jacksonii and C. monteithiana, the two species that cause dollar spot disease within the United States. The calmodulin gene (CaM) was targeted to generate Clarireedia spp. specific PCR primers. The CAPS assay was optimized and tested for specificity and sensitivity using DNA extracted from pure cultures of two Clarireedia spp. and other closely related fungal species. The results showed that the newly developed primer set could amplify both species and was highly sensitive as it detected DNA concentrations as low as 0.005 ng/µL. The assay was further validated using direct PCR to speed up the diagnosis process. This drastically reduces the time needed to identify the dollar spot pathogens. The resulting assay could be used throughout turfgrass settings for a rapid and precise identification method in the US.

Author(s):  
S.M. Mahan ◽  
B.H. Simbi ◽  
M.J. Burridge

White-tailed deer are susceptible to heartwater (Ehrlichia [Cowdria] ruminantium infection) and are likely to suffer high mortality if the disease spreads to the United States. It is vital, therefore, to validate a highly specific and sensitive detection method for E. ruminantium infection that can be reliably used in testing white-tailed deer, which are reservoirs of antigenically or genetically related agents such as Ehrlichia chaffeensis, Anaplasma (Ehrlichia) phagocytophilum (HGE agent) and Ehrlichia ewingii. Recently, a novel but as yet unnamed ehrlichial species, the white-tailed deer ehrlichia (WTDE), has been discovered in deer populations in the United States. Although the significance of WTDE as a pathogen is unknown at present, it can be distinguished from other Ehrlichia spp. based on 16S rRNA gene sequence analysis. In this study it was differentiated from E. ruminantium by the use of the pCS20 PCR assay which has high specificity and sensitivity for the detection of E. ruminantium. This assay did not amplify DNA from the WTDE DNA samples isolated from deer resident in Florida, Georgia and Missouri, but amplified the specific 279 bp fragment from E. ruminantium DNA. The specificity of the pCS20 PCR assay for E. ruminantium was confirmed by Southern hybridization. Similarly, the 16S PCR primers (nested) that amplify a specific 405-412 bp fragment from the WTDE DNA samples, did not amplify any product from E. ruminantium DNA. This result demonstrates that it would be possible to differentiate between E. ruminantium and the novel WTDE agent found in white tailed deer by applying the two respective PCR assays followed by Southern hybridizations. Since the pCS20 PCR assay also does not amplify any DNA products from E. chaffeensis or Ehrlichia canis DNA, it is therefore the method of choice for the detection of E. ruminantium in these deer and other animal hosts.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 143-143 ◽  
Author(s):  
M. Cadavid ◽  
J. C. Ángel ◽  
J. I. Victoria

Symptoms of sugarcane orange rust were first observed in July 2010 on sugarcane (interspecific hybrid of Saccharum L. species) cv. CC 01-1884 planted in the La Cabaña Sugar Mill, Puerto Tejada, Colombia. Morphological features of uredinial lesions and urediniospores inspected with an optical microscope and scanning electron microscopy were distinct from common rust of sugarcane caused by Puccinia melanocephala Syd. & P. Syd., revealing spores identical morphologically to those described for the fungus P. kuehnii (Kruger) E. Butler, causal agent of sugarcane orange rust (1,3). Uredinial lesions were orange and distinctly lighter in color than pustules of P. melanocephala. Urediniospores were orange to light cinnamon brown, mostly ovoid to pyriform, variable in size (27.3 to 39.2 × 16.7 to 21.2 μm), with pronounced apical wall and moderately echinulate with spines evenly distributed. Paraphyses, telia, and teliospores were not observed. Species-specific PCR primers designed from the internal transcribed spacer (ITS)1, ITS2, and 5.8S rDNA regions of P. melanocephala and P. kuehnii were used to differentiate the two species (2). The primers Pm1-F and Pm1-R amplified a 480-bp product from P. melanocepahala DNA in leaf samples with symptoms of common rust. By contrast, the primers Pk1-F and Pk1-R generated a 527-bp product from presumed P. kuehnii DNA in leaf samples with signs of orange rust, confirming the identity as P. kuehnii. The Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) started a survey of different cultivars in nurseries and experimental and commercial fields in the Cauca River Valley and collected leaf samples for additional analyses. Experimental cvs. CC 01-1884, CC 01-1866, and CC 01-1305 were found to be highly susceptible to orange rust and were eliminated from regional trials, whereas commercial cvs. CC 85-92 and CC 84-75, the most widely grown cultivars, were resistant. With the discovery of orange rust of sugarcane in Colombia, Cenicaña has incorporated orange rust resistance in the selection and development of new cultivars. To our knowledge, this is the first report of P. kuehnii on sugarcane in Colombia. Orange rust has also been reported from the United States, Cuba, Mexico, Guatemala, Nicaragua, El Salvador, Costa Rica, Panama, Ecuador, and Brazil. References: (1) J. C. Comstock et al. Plant Dis. 92:175, 2008. (2) N. C. Glynn et al. Plant Pathol. 59:703, 2010. (3) E. V. Virtudazo et al. Mycoscience 42:167, 2001.


Plant Disease ◽  
2020 ◽  
Vol 104 (9) ◽  
pp. 2346-2353
Author(s):  
David A. Enicks ◽  
Rachel A. Bomberger ◽  
Achour Amiri

Bull’s eye rot (BER) is a major economic postharvest disease of apple and pear that can be caused by four Neofabraea species: N. perennans, N. alba, N. malicorticis, and N. kienholzii. In Central Washington, BER is predominantly caused by N. perennans. The fungus infects fruit preharvest, and because of the dry growing season in the region, infections remain latent with symptoms expressed only after 3 to 4 months of storage, when BER incidences as high as 20% can been seen, especially in rainy seasons and on susceptible cultivars. To ensure early and efficient infection detections before BER symptoms become visible at point-of-care locations, a portable diagnostic tool based on loop-mediated isothermal amplification (LAMP) was developed using the β-tubulin gene. The LAMP assay was optimized and tested for specificity and sensitivity using DNA extracted from pure cultures of N. perennans and seven other fungal species. The results showed that the selected LAMP primer set was specific to N. perennans and highly sensitive as it detected DNA concentrations as low as 0.001 ng/µl after only 10 min. The assay was validated for N. perennans detection on artificially inoculated apples using a portable thermocycler, Genie II, without the need for DNA extraction. The LAMP assay detected N. perennans on apples inoculated with spore suspensions 3 weeks prior to harvest at concentrations of 103 spores/ml or higher. The assay was further validated using commercial Piñata apples from organic and conventional orchards, demonstrating the ability of this technique to amplify N. perennans from asymptomatic fruit in a commercial setting 3 months before commercial maturity. The LAMP assay developed for N. perennans detection can be easily expanded to detect the other BER causal species. LAMP has potential to be used in orchards and at point-of-care facilities to better inform on BER management at different fruit growth stages, and it has potential to be utilized to better understand the epidemiology of Neofabraea spp.


2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


2003 ◽  
Vol 69 (12) ◽  
pp. 7430-7434 ◽  
Author(s):  
Trevor G. Phister ◽  
David A. Mills

ABSTRACT Traditional methods to detect the spoilage yeast Dekkera bruxellensis from wine involve lengthy enrichments. To overcome this difficulty, we developed a quantitative real-time PCR method to directly detect and enumerate D. bruxellensis in wine. Specific PCR primers to D. bruxellensis were designed to the 26S rRNA gene, and nontarget yeast and bacteria common to the winery environment were not amplified. The assay was linear over a range of cell concentrations (6 log units) and could detect as little as 1 cell per ml in wine. The addition of large amounts of nontarget yeasts did not impact the efficiency of the assay. This method will be helpful to identify possible routes of D. bruxellensis infection in winery environments. Moreover, the time involved in performing the assay (3 h) should enable winemakers to more quickly make wine processing decisions in order to reduce the threat of spoilage by D. bruxellensis.


Plant Disease ◽  
2021 ◽  
Author(s):  
Benzhong Fu ◽  
Jieqian Zhu ◽  
Conard Lee ◽  
Lihua Wang

Walnut bacterial blight caused by Xanthomonas arboricola pv. juglandis (Xaj) has serious repercussions for walnut production around the world. Between 2015 and 2017, disease samples were collected from six counties (Danjiangkou, Baokang, Suizhou, Shennongjia, Zigui, and Xingshan) in Hubei province, China. Fifty-nine Xaj strains were identified by morphology and specific PCR primers from 206 isolates. The genetic diversity of 60 Xaj strains (59 from Hubei plus one from Beijing) was evaluated by Multilocus Sequence Analysis (MLST), and their resistance to copper ion (Cu2+) treatment was determined. A Neighbor Joining phylogenetic dendrogram was constructed based on four sequences of housekeeping genes (atpD-dnaK-glnA-gyrB). Two groups of strains were identified whose clustering was consistent with that of glnA. The minimal inhibitory concentration of copper ion on representative Xaj strain DW3F3 (the first genome sequenced Xaj from China) was 115 μg/ml. Setting the copper resistant threshold value to 125 μg/ml, 47 and 13 strains were considered sensitive and resistant to Cu2+, respectively. Furthermore, five strains showed Cu2+ resistance at 270 μg/ml. Compared to the copB from sensitive strains, the copB gene in resistant strains had a 15-bp insertion and eight scattered single nucleotide polymorphisms. Interestingly, the clustering based on MLSA was distinct between Xaj copper ion resistant and sensitive strains.


1993 ◽  
Vol 13 (6) ◽  
pp. 3282-3290
Author(s):  
X Li ◽  
D C Beebe

Crystallins are proteins that accumulate to very high concentrations in the fiber cells of the lens of the eye. Crystallins are responsible for the transparency and high refractive index that are essential for lens function. In the chicken embryo, delta-crystallin accounts for more than 70% of the newly synthesized lens proteins. We used density labeling and gene-specific polymerase chain reaction (PCR) to determine the mechanism regulating the expression of the two very similar delta-crystallin genes. Newly synthesized RNA was separated from preexisting RNA by incubating the lenses with 15N- and 13C-labeled ribonucleosides and then separating newly synthesized, density-labeled RNA from the bulk of light RNA by equilibrium density centrifugation in NaI-KI gradients. The relative abundances of the two crystallin mRNAs in the separated fractions were then determined by PCR. This method permitted the quantitation of newly synthesized processed and unprocessed delta-crystallin mRNAs. Additional studies used intron- and gene-specific PCR primers to determine the relative expression of the two delta-crystallin genes in processed RNA and unprocessed RNA extracted from different regions of the embryonic lens. Results of these tests indicated that the differential expression of the delta-crystallin genes was regulated primarily at the level of transcription. This outcome was not expected on the basis of the results of previous studies, which used in vitro transcription and transfection methods to evaluate the relative strengths of delta-crystallin promoter and enhancer sequences. Our data suggest that the cultured cells used in these earlier studies may not have provided an accurate view of delta-crystallin regulation in the intact lens.


Sign in / Sign up

Export Citation Format

Share Document