Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant

2016 ◽  
Vol 100 (18) ◽  
pp. 8147-8157 ◽  
Author(s):  
Yasushi Kamisaka ◽  
Kazuyoshi Kimura ◽  
Hiroshi Uemura ◽  
Rodrigo Ledesma-Amaro
mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Paul Cernak ◽  
Raissa Estrela ◽  
Snigdha Poddar ◽  
Jeffrey M. Skerker ◽  
Ya-Fang Cheng ◽  
...  

ABSTRACTThroughout history, the yeastSaccharomyces cerevisiaehas played a central role in human society due to its use in food production and more recently as a major industrial and model microorganism, because of the many genetic and genomic tools available to probe its biology. However,S. cerevisiaehas proven difficult to engineer to expand the carbon sources it can utilize, the products it can make, and the harsh conditions it can tolerate in industrial applications. Other yeasts that could solve many of these problems remain difficult to manipulate genetically. Here, we engineered the thermotolerant yeastKluyveromyces marxianusto create a new synthetic biology platform. Using CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with Cas9)-mediated genome editing, we show that wild isolates ofK. marxianuscan be made heterothallic for sexual crossing. By breeding two of these mating-type engineeredK. marxianusstrains, we combined three complex traits—thermotolerance, lipid production, and facile transformation with exogenous DNA—into a single host. The ability to crossK. marxianusstrains with relative ease, together with CRISPR-Cas9 genome editing, should enable engineering ofK. marxianusisolates with promising lipid production at temperatures far exceeding those of other fungi under development for industrial applications. These results establishK. marxianusas a synthetic biology platform comparable toS. cerevisiae, with naturally more robust traits that hold potential for the industrial production of renewable chemicals.IMPORTANCEThe yeastKluyveromyces marxianusgrows at high temperatures and on a wide range of carbon sources, making it a promising host for industrial biotechnology to produce renewable chemicals from plant biomass feedstocks. However, major genetic engineering limitations have kept this yeast from replacing the commonly used yeastSaccharomyces cerevisiaein industrial applications. Here, we describe genetic tools for genome editing and breedingK. marxianusstrains, which we use to create a new thermotolerant strain with promising fatty acid production. These results open the door to usingK. marxianusas a versatile synthetic biology platform organism for industrial applications.


AMB Express ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yongjun Wei ◽  
Michael Gossing ◽  
David Bergenholm ◽  
Verena Siewers ◽  
Jens Nielsen

2007 ◽  
Vol 408 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Yasushi Kamisaka ◽  
Nao Tomita ◽  
Kazuyoshi Kimura ◽  
Kumiko Kainou ◽  
Hiroshi Uemura

We previously found that SNF2, a gene encoding a transcription factor forming part of the SWI/SNF (switching/sucrose non-fermenting) chromatin-remodelling complex, is involved in lipid accumulation, because the Δsnf2 disruptant of Saccharomyces cerevisiae has a higher lipid content. The present study was conducted to identify other factors that might further increase lipid accumulation in the Δsnf2 disruptant. First, expression of LEU2 (a gene encoding β-isopropylmalate dehydrogenase), which was used to select transformed strains by complementation of the leucine axotroph, unexpectedly increased both growth and lipid accumulation, especially in the Δsnf2 disruptant. The effect of LEU2 expression on growth and lipid accumulation could be reproduced by adding large amounts of leucine to the culture medium, indicating that the effect was not due to Leu2p (β-isopropylmalate dehydrogenase) itself, but rather to leucine biosynthesis. To increase lipid accumulation further, genes encoding the triacylglycerol biosynthetic enzymes diacylglycerol acyltransferase (DGA1) and phospholipid:diacylglycerol acyltransferase (LRO1) were overexpressed in the Δsnf2 disruptant. Overexpression of DGA1 significantly increased lipid accumulation, especially in the Δsnf2 disruptant, whereas LRO1 overexpression decreased lipid accumulation in the Δsnf2 disruptant. Furthermore, the effect of overexpression of acyl-CoA synthase genes (FAA1, FAA2, FAA3 and FAA4), which each supply a substrate for Dga1p (diacylglycerol acyltransferase), was investigated. Overexpression of FAA3, together with that of DGA1, did not further increase lipid accumulation in the Δsnf2 disruptant, but did enhance lipid accumulation in the presence of exogenous fatty acids. Lastly, the total lipid content in the Δsnf2 disruptant transformed with DGA1 and FAA3 overexpression vectors reached approx. 30%, of which triacylglycerol was the most abundant lipid. Diacylglycerol acyltransferase activity was significantly increased in the Δsnf2 disruptant strain overexpressing DGA1 as compared with the wild-type strain overexpressing DGA1; this higher activity may account for the prominent increase in lipid accumulation in the Δsnf2 disruptant with DGA1 overexpression. The strains obtained have a lipid content that is high enough to act as a model of oleaginous yeast and they may be useful for the metabolic engineering of lipid production in yeast.


2001 ◽  
Vol 36 (2) ◽  
pp. 196-201 ◽  
Author(s):  
F. Seibold ◽  
O. Stich ◽  
R. Hufnagl ◽  
S. Kamil ◽  
M. Scheurlen

Sign in / Sign up

Export Citation Format

Share Document