scholarly journals DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Δsnf2 disruptant of Saccharomyces cerevisiae

2007 ◽  
Vol 408 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Yasushi Kamisaka ◽  
Nao Tomita ◽  
Kazuyoshi Kimura ◽  
Kumiko Kainou ◽  
Hiroshi Uemura

We previously found that SNF2, a gene encoding a transcription factor forming part of the SWI/SNF (switching/sucrose non-fermenting) chromatin-remodelling complex, is involved in lipid accumulation, because the Δsnf2 disruptant of Saccharomyces cerevisiae has a higher lipid content. The present study was conducted to identify other factors that might further increase lipid accumulation in the Δsnf2 disruptant. First, expression of LEU2 (a gene encoding β-isopropylmalate dehydrogenase), which was used to select transformed strains by complementation of the leucine axotroph, unexpectedly increased both growth and lipid accumulation, especially in the Δsnf2 disruptant. The effect of LEU2 expression on growth and lipid accumulation could be reproduced by adding large amounts of leucine to the culture medium, indicating that the effect was not due to Leu2p (β-isopropylmalate dehydrogenase) itself, but rather to leucine biosynthesis. To increase lipid accumulation further, genes encoding the triacylglycerol biosynthetic enzymes diacylglycerol acyltransferase (DGA1) and phospholipid:diacylglycerol acyltransferase (LRO1) were overexpressed in the Δsnf2 disruptant. Overexpression of DGA1 significantly increased lipid accumulation, especially in the Δsnf2 disruptant, whereas LRO1 overexpression decreased lipid accumulation in the Δsnf2 disruptant. Furthermore, the effect of overexpression of acyl-CoA synthase genes (FAA1, FAA2, FAA3 and FAA4), which each supply a substrate for Dga1p (diacylglycerol acyltransferase), was investigated. Overexpression of FAA3, together with that of DGA1, did not further increase lipid accumulation in the Δsnf2 disruptant, but did enhance lipid accumulation in the presence of exogenous fatty acids. Lastly, the total lipid content in the Δsnf2 disruptant transformed with DGA1 and FAA3 overexpression vectors reached approx. 30%, of which triacylglycerol was the most abundant lipid. Diacylglycerol acyltransferase activity was significantly increased in the Δsnf2 disruptant strain overexpressing DGA1 as compared with the wild-type strain overexpressing DGA1; this higher activity may account for the prominent increase in lipid accumulation in the Δsnf2 disruptant with DGA1 overexpression. The strains obtained have a lipid content that is high enough to act as a model of oleaginous yeast and they may be useful for the metabolic engineering of lipid production in yeast.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Valerie C. A. Ward ◽  
Lars Rehmann

AbstractMicroalgae can accumulate large proportions of their dry cell weight as storage lipids when grown under appropriate nutrient limiting conditions. While a high ratio of carbon to nitrogen is often cited as the primary mode of triggering lipid accumulation in microalgae, fast optimization strategies to increase lipid production for mixotrophic cultivation have been difficult to developed due to the low cell densities of algal cultures, and consequently the limited amount of biomass available for compositional analysis. Response surface methodologies provide a power tool for assessing complex relationships such as the interaction between the carbon source and nitrogen source. A 15 run Box-Behnken design performed in shaker flasks was effective in studying the effect of carbon, nitrogen, and magnesium on the growth rate, maximum cell density, lipid accumulation rate, and glucose consumption rate. Using end-point dry cell weight and total lipid content as assessed by direct transesterification to FAME, numerical optimization resulted in a significant increase in lipid content from 18.5 ± 0.76% to 37.6 ± 0.12% and a cell density of 5.3 ± 0.1 g/L to 6.1 ± 0.1 g/L between the centre point of the design and the optimized culture conditions. The presented optimization process required less than 2 weeks to complete, was simple, and resulted in an overall lipid productivity of 383 mg/L·d.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 463 ◽  
Author(s):  
Ali Nawaz Kumbhar ◽  
Meilin He ◽  
Abdul Razzaque Rajper ◽  
Khalil Ahmed Memon ◽  
Muhammad Rizwan ◽  
...  

The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells−1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells−1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenhua Yang ◽  
Yue Zhao ◽  
Zhiyong Liu ◽  
Chenfeng Liu ◽  
Zhipeng Hu ◽  
...  

Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.


2000 ◽  
Vol 28 (6) ◽  
pp. 692-695 ◽  
Author(s):  
P. Bouvier-Navé ◽  
P. Benveniste ◽  
A. Noiriel ◽  
H. Schaller

we have identified a cDNA from the nematode worm Caenorhabditis elegans that encodes an acyl-CoA: diacylglycerol acyltransferase (DGAT). Its expression in Saccharomyces cerevisiae resulted in an increase both in triacylglycerol content and in microsomal oleyl-CoA: diacylglycerol acyltransferase activity. Such effects were similar to those of characterized plant DGAT genes. This is the first DGAT gene isolated from an invertebrate. The phylogenetic relationships between DGATs and animal and yeast acyl-CoA: sterol acyltransferases are illustrated.


2014 ◽  
Vol 521 ◽  
pp. 68-71
Author(s):  
Xiang Ji ◽  
Jin Rong Wang ◽  
Xiao Li Miao ◽  
Kai Hua Liu ◽  
Lu Cai

Based on optimized aquatic diatom medium, treatment of nutrient deficiency was carried out to Navicula sp. and the analysis results of comprehensive biomass and total lipid content indicated that the optimal Tmass concentrations of TFeClB3B·3HB2BO,T TCdSOB4 Band Citric acid were 1.2×10P-5P mol/L, 0.8μg/L and 12 mg/L, respectively. Maximum biomass of Navicula sp. on this culture medium at 680 spectrophotometrically could reach 1.201. Final lipid content of this microalgae could be improved from 26.60% to 37.68% after the stress of nutrient deficiency treatment.


2021 ◽  
Vol 22 (3) ◽  
pp. 1304
Author(s):  
Hang Su ◽  
Jia Feng ◽  
Junping Lv ◽  
Qi Liu ◽  
Fangru Nan ◽  
...  

The oleaginous microalgae species Chlorococcum sphacosum GD is a promising feedstock for biodiesel production from soil. However, its metabolic mechanism of lipid production remains unclear. In this study, the lipid accumulation and metabolism mechanisms of Chlorococcum sphacosum GD were analyzed under salt stress based on transcriptome sequencing. The biomass and lipid content of the alga strain were determined under different NaCl concentrations, and total RNA from fresh cells were isolated and sequenced by HiSeq 2000 high throughput sequencing technology. As the salt concentration increased in culture medium, the algal lipid content increased but the biomass decreased. Following transcriptome sequencing by assembly and splicing, 24,128 unigenes were annotated, with read lengths mostly distributed in the 200–300 bp interval. Statistically significant differentially expressed unigenes were observed in different experimental groups, with 2051 up-regulated genes and 1835 down-regulated genes. The lipid metabolism pathway analysis showed that, under salt stress, gene-related fatty acid biosynthesis (ACCase, KASII, KAR, HAD, FATA) was significantly up-regulated, but some gene-related fatty acid degradation was significantly down-regulated. The comprehensive results showed that salt concentration can affect the lipid accumulation and metabolism of C. sphacosum GD, and the lipid accumulation is closely related to the fatty acid synthesis pathway.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xin Tang ◽  
Xiaoqi Sun ◽  
Xuxu Wang ◽  
Hao Zhang ◽  
Yong Q. Chen ◽  
...  

Mortierella alpina has a strong capacity for lipid accumulation. Isocitrate dehydrogenase (IDH) plays an important role in affecting the flow of intracellular carbon sources and reducing power NADPH for lipid biosynthesis. In this study, the effect of various IDHs (NAD+- and NADP+-specific) in M. alpina on the lipid accumulation was investigated through homologous overexpression. The results showed that the transcription level and enzyme activity of the IDHs from M. alpina (MaIDHs) in homologous overexpressing strains were higher than those of the control strain, but that their biomass was not significantly different. Among the various NAD+-specific MaIDH1/2/3 overexpression, NAD+-MaIDH3 reduced total lipid content by 12.5%, whereas overexpression NAD+-MaIDH1 and NAD+-MaIDH2 had no effect on fatty acid content. Intracellular metabolites analysis indicated that the overexpression NAD+-MaIDH3 strain had reduced the fatty acid accumulation, due to its greater carbon flux with the tricarboxylic acid cycle and less carbon flux with fatty acid biosynthesis. For the NADP+-MaIDH4/5/6 recombinant strains overexpressing only NADP+-MaIDH4 enhanced the total fatty acid content by 8.2%. NADPH analysis suggested that this increase in lipid accumulation may have been due to the great reducing power NADPH is produced in this recombinant strain. This study provides theoretical basis and guidance for the analysis of the mechanism of IDH function and the potential to improve lipid production in M. alpina.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2282 ◽  
Author(s):  
Thi Dong Phuong Nguyen ◽  
Duc Huy Nguyen ◽  
Jun Wei Lim ◽  
Chih-Kai Chang ◽  
Hui Yi Leong ◽  
...  

Algae biorefinery is gaining much attention for the sustainable production of value-added products (e.g., biofuels, protein supplements etc.) globally. The current study aimed to investigate the relationship between lipid production and bacteria growth by an initial microalgae Chlorella vulgaris density culture in seafood wastewater effluent (SWE). According to our results, the initial C. vulgaris concentration in SWE influenced lipid accumulation. The concentration ranged from 25–35 mg·L−1 which corresponds to SWE’s chemical oxygen demand concentration of 365.67 ± 3.45 mg·L−1. A higher microalgae growth rate and lipid content of 32.15 ± 1.45% was successfully attained. A higher lipid content, approximately double, was observed when compared to the control (16.8 ± 0.5%). Moreover, this study demonstrates that bacteria inhibited microalgae growth as the initial cell density stepped over 35 mg·L−1, which also affected lipid accumulation. This study shows an optimal lipid accumulation attained at moderate Chlorella vulgaris density culture in SWE. Hence, wastewater treatment incorporating microalgae culture could be greatly developed in the future to achieve a greener environment.


2020 ◽  
Vol 20 (8) ◽  
Author(s):  
Daniel Ruben Akiola Sanya ◽  
Djamila Onesime ◽  
Gotthard Kunze ◽  
Cécile Neuveglise ◽  
Anne-Marie Crutz-Le Coq

ABSTRACT Blastobotrys raffinosifermentans is an ascomycetous yeast with biotechnological applications, recently shown to be an oleaginous yeast accumulating lipids under nitrogen limitation. Diacylglycerol acyltransferases (DGATs) act in the lipid storage pathway, in the last step of triacylglycerol biosynthesis. Two DGAT families are widespread in eukaryotes. We first checked that B. raffinosifermentans strain LS3 possessed both types of DGAT, and we then overexpressed the native DGAT-encoding genes, DGA1 and DGA2, separately or together. DGA2 (from the DGAT1 family) overexpression was sufficient to increase lipid content significantly in LS3, to up to 26.5% of dry cell weight (DCW), 1.6 times the lipid content of the parental strain (16.90% of DCW) in glucose medium under nitrogen limitation. By contrast, DGA1 (of the DGAT2 type) overexpression led to a large increase (up to 140-fold) in the amount of the corresponding transcript, but had no effect on overall lipid content relative to the parental strain. Analysis of the expression of the native genes over time in the parental strain revealed that DGA2 transcript levels quadrupled between 8 and 24 h in the N-limited lipogenic medium, whereas DGA1 transcript levels remained stable. This survey highlights the predominant role of the DGAT1 family in lipid accumulation and demonstrates the suitability of B. raffinosifermentans for engineering for lipid production.


Sign in / Sign up

Export Citation Format

Share Document