scholarly journals Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids

2019 ◽  
Vol 103 (19) ◽  
pp. 8051-8062 ◽  
Author(s):  
Xinxin Zheng ◽  
Yinglu Cui ◽  
Tao Li ◽  
Ruifeng Li ◽  
Lu Guo ◽  
...  
2019 ◽  
Author(s):  
Xinxin Zheng ◽  
Yinglu Cui ◽  
Tao Li ◽  
Ruifeng Li ◽  
Lu Guo ◽  
...  

AbstractAminotransferases (ATs) are important biocatalysts for the synthesis of chiral amines because of their capability of introducing amino group into ketones or keto acids as well as their high enantioselectivity, high regioselectivity and no requirement of external addition of cofactor. Among all ATs, branched-chain amino acid aminotransferase (BCAT) can reversibly catalyse branched-chain amino acids (BCAAs), including L-valine, L-leucine, and L-isoleucine, with α-ketoglutaric acid to form the corresponding ketonic acids and L-glutamic acid. Alternatively, BCATs have been used for the biosynthesis of unnatural amino acids, such as L-tert-leucine. In the present study, the BCAT from Pseudomonas sp. (PsBCAT) was cloned and expressed in Escherichia coli for biochemical and structural analyses. The optimal reaction temperature and pH of PsBCAT were 40 °C and 8.5, respectively. PsBCAT exhibited a comparatively broader substrate spectrum, and showed remarkably high activity with L-leucine, L-valine, L-isoleucine and L-methionine with activities of 105 U/mg, 127 U/mg, 115 U/mg and 98 U/mg, respectively. Additionally, PsBCAT had activities with aromatic L-amino acids, L-histidine, L-lysine, and L-threonine. To analyse the catalytic mechanism of PsBCAT with the broad substrate spectrum, the crystal structure of PsBCAT was also determined. Finally, conjugated with the ornithine aminotransferase (OrnAT) from Bacillus subtilis, the coupled system was applied to the preparation of L-tert-leucine with 83% conversion, which provided an approximately 2.7-fold higher yield than the single BCAT reaction.IMPORTANCEDespite the enormous potential of BCATs, the vast majority of enzymes still lack suitably broad substrate scope and activity, thus new sources and novel enzymes are currently being investigated. Here, we described a previously uncharacterized PsBCAT, which showed a surprisingly wide substrate range and was more active towards BCAAs. This substrate promiscuity is unique for the BCAT family and could prove useful in industrial applications. Based on the determined crystal structure, we found some differences in the organization of the substrate binding cavity, which may influence the substrate specificity of the enzyme. Moreover, we demonstrated efficient biocatalytic asymmetric synthesis of L-tert-leucine using a coupling system, which can be used to remove the inhibitory by-product, and to shift the reaction equilibrium towards the product formation. In summary, the structural and functional characteristics of PsBCAT were analysed in detail, and this information will play an important role in the synthesis of chiral amino acids and will be conducive to industrial production of enantiopure chiral amines by aminotransferase.


2002 ◽  
Vol 184 (15) ◽  
pp. 4071-4080 ◽  
Author(s):  
A. H. F. Hosie ◽  
D. Allaway ◽  
C. S. Galloway ◽  
H. A. Dunsby ◽  
P. S. Poole

ABSTRACT Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (BraRl). Characterization of the solute specificity of BraRl shows it to be the second general amino acid permease of R. leguminosarum. Although BraRl has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (l-glutamate, l-arginine, and l-histidine), in addition to neutral amino acids (l-alanine and l-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be α-amino acids. Consistent with this, BraRl is the first ABC transporter to be shown to transport γ-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by BraRl does not appear to be stereospecific as d amino acids cause significant inhibition of uptake of l-glutamate and l-leucine. Unlike all other solutes tested, l-alanine uptake is not dependent on solute binding protein BraCRl. Therefore, a second, unidentified solute binding protein may interact with the BraDEFGRl membrane complex during l-alanine uptake. Overall, the data indicate that BraRl is a general amino acid permease of the HAAT family. Furthermore, BraRl has the broadest solute specificity of any characterized bacterial amino acid transporter.


2015 ◽  
Vol 39 (5) ◽  
pp. 3319-3326 ◽  
Author(s):  
Madhusudana M. B. Reddy ◽  
K. Basuroy ◽  
S. Chandrappa ◽  
B. Dinesh ◽  
B. Vasantha ◽  
...  

γn amino acid residues can be incorporated into structures in γn and hybrid sequences containing folded and extended α and δ residues.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karin Shimada ◽  
Isao Matsui ◽  
Kazunori Inoue ◽  
Ayumi Matsumoto ◽  
Seiichi Yasuda ◽  
...  

Abstract Dietary phosphate intake is closely correlated with protein intake. However, the effects of the latter on phosphate-induced organ injuries remain uncertain. Herein, we investigated the effects of low (10.8%), moderate (23.0%), and high (35.2%) dietary casein and egg albumin administration on phosphate-induced organ injuries in rats. The moderate and high casein levels suppressed renal tubulointerstitial fibrosis and maintained mitochondrial integrity in the kidney. The serum creatinine levels were suppressed only in the high casein group. Phosphate-induced muscle weakness was also ameliorated by high dietary casein. The urinary and fecal phosphate levels in the early experiment stage showed that dietary casein did not affect phosphate absorption from the intestine. High dietary egg albumin showed similar kidney protective effects, while the egg albumin effects on muscle weakness were only marginally significant. As the plasma branched-chain amino acid levels were elevated in casein- and egg albumin-fed rats, we analyzed their effects. Dietary supplementation of 10% branched-chain amino acids suppressed phosphate-induced kidney injury and muscle weakness. Although dietary protein restriction is recommended in cases of chronic kidney disease, our findings indicate that the dietary casein, egg albumin, and branched-chain amino acid effects might be reconsidered in the era of a phosphate-enriched diet.


1977 ◽  
Vol 41 (7) ◽  
pp. 1171-1177 ◽  
Author(s):  
Yuji KOIDE ◽  
Mamoru HONMA ◽  
Tokuji SHIMOMURA

Sign in / Sign up

Export Citation Format

Share Document