How can the epikarst zone influence the karst aquifer hydraulic behaviour?

2006 ◽  
Vol 51 (5) ◽  
pp. 761-765 ◽  
Author(s):  
Branka Trček
Geologija ◽  
2002 ◽  
Vol 45 (2) ◽  
pp. 579-584 ◽  
Author(s):  
Branka Trček ◽  
Noel C. Krothe

1997 ◽  
Vol 36 (8-9) ◽  
pp. 57-63 ◽  
Author(s):  
Homayoun Motiee ◽  
Bernard Chocat ◽  
Olivier Blanpain

This paper presents a model for the hydraulic simulation of a drainage network using the storage concept. This model is easier to use than the complete Barre de Saint Venant equations and gives better results than the usual conceptual models, i.e. the Muskingum model, or than models obtained by the simplification of the Saint Venant equations (kinematic wave model and diffusion wave model).


1997 ◽  
Vol 36 (5) ◽  
pp. 177-184
Author(s):  
Lennart Heip ◽  
Johan Van Assel ◽  
Patrick Swartenbroekx

Within the framework of an EC-funded SPRINT-project, a sewer flow quality model of a typical rural Flemish catchment was set up. The applicability of such a model is demonstrated. Furthermore a methodology for model building, data collection and model calibration and verification is proposed. To this end an intensive 9 month measuring campaign was undertaken. The hydraulic behaviour of the sewer network was continuously monitored during those 9 months. During both dry weather flow (DWF) and wet weather flow (WWF) a number of sewage samples were taken and analysed for BOD, COD, TKN, TP and TSS. This resulted in 286 WWF and 269 DWF samples. The model was calibrated and verified with these data. Finally a software independent methodology for interpretation of the model results is proposed.


1999 ◽  
Vol 39 (4) ◽  
pp. 55-60 ◽  
Author(s):  
J. Alex ◽  
R. Tschepetzki ◽  
U. Jumar ◽  
F. Obenaus ◽  
K.-H. Rosenwinkel

Activated sludge models are widely used for planning and optimisation of wastewater treatment plants and on line applications are under development to support the operation of complex treatment plants. A proper model is crucial for all of these applications. The task of parameter calibration is focused in several papers and applications. An essential precondition for this task is an appropriately defined model structure, which is often given much less attention. Different model structures for a large scale treatment plant with circulation flow are discussed in this paper. A more systematic method to derive a suitable model structure is applied to this case. Results of a numerical hydraulic model are used for this purpose. The importance of these efforts are proven by a high sensitivity of the simulation results with respect to the selection of the model structure and the hydraulic conditions. Finally it is shown, that model calibration was possible only by adjusting to the hydraulic behaviour and without any changes of biological parameters.


Author(s):  
Irina Gaus ◽  
Klaus Wieczorek ◽  
Juan Carlos Mayor ◽  
Thomas Trick ◽  
Jose´-Luis Garcia` Sin˜eriz ◽  
...  

The evolution of the engineered barrier system (EBS) of geological repositories for radioactive waste has been the subject of many research programmes during the last decade. The emphasis of the research activities was on the elaboration of a detailed understanding of the complex thermo-hydro-mechanical-chemical processes, which are expected to evolve in the early post closure period in the near field. It is important to understand the coupled THM-C processes and their evolution occurring in the EBS during the early post-closure phase so it can be confirmed that the safety functions will be fulfilled. Especially, it needs to be ensured that interactions during the resaturation phase (heat pulse, gas generation, non-uniform water uptake from the host rock) do not affect the performance of the EBS in terms of its safety-relevant parameters (e.g. swelling pressure, hydraulic conductivity, diffusivity). The 7th Framework PEBS project (Long Term Performance of Engineered Barrier Systems) aims at providing in depth process understanding for constraining the conceptual and parametric uncertainties in the context of long-term safety assessment. As part of the PEBS project a series of laboratory and URL experiments are envisaged to describe the EBS behaviour after repository closure when resaturation is taking place. In this paper the very early post-closure period is targeted when the EBS is subjected to high temperatures and unsaturated conditions with a low but increasing moisture content. So far the detailed thermo-hydraulic behaviour of a bentonite EBS in a clay host rock has not been evaluated at a large scale in response to temperatures of up to 140°C at the canister surface, produced by HLW (and spent fuel), as anticipated in some of the designs considered. Furthermore, earlier THM experiments have shown that upscaling of thermal conductivity and its dependency on water content and/or humidity from the laboratory scale to a field scale needs further attention. This early post-closure thermal behaviour will be elucidated by the HE-E experiment, a 1:2 scale heating experiment setup at the Mont Terri rock laboratory, that started in June 2011. It will characterise in detail the thermal conductivity at a large scale in both pure bentonite as well as a bentonite-sand mixture, and in the Opalinus Clay host rock. The HE-E experiment is especially designed as a model validation experiment at the large scale and a modelling programme was launched in parallel to the different experimental steps. Scoping calculations were run to help the experimental design and prediction exercises taking the final design into account are foreseen. Calibration and prediction/validation will follow making use of the obtained THM dataset. This benchmarking of THM process models and codes should enhance confidence in the predictive capability of the recently developed numerical tools. It is the ultimate aim to be able to extrapolate the key parameters that might influence the fulfilment of the safety functions defined for the long term steady state.


Sign in / Sign up

Export Citation Format

Share Document