Identification of hotspots for potential pyrethroid runoff: a GIS modeling study in San Joaquin River Watershed of California, USA

2007 ◽  
Vol 55 (6) ◽  
pp. 1195-1206 ◽  
Author(s):  
Xuyang Zhang ◽  
Minghua Zhang ◽  
Xingmei Liu
2012 ◽  
Vol 44 (4) ◽  
pp. 723-736 ◽  
Author(s):  
Zili He ◽  
Zhi Wang ◽  
C. John Suen ◽  
Xiaoyi Ma

To examine the hydrological system sensitivity of the southern Sierra Nevada Mountains of California to climate change scenarios (CCS), five headwater basins in the snow-dominated Upper San Joaquin River Watershed (USJRW) were selected for hydrologic simulations using the Hydrological Simulation Program-Fortran (HSPF) model. A pre-specified set of CCS as projected by the Intergovernmental Panel on Climate Change (IPCC) were adopted as inputs for the hydrologic analysis. These scenarios include temperature increases between 1.5 and 4.5 °C and precipitation variation between 80 and 120% of the baseline conditions. The HSPF model was calibrated and validated with measured historical data. It was then used to simulate the hydrologic responses of the watershed to the projected CCS. Results indicate that the streamflow of USJRW is sensitive to the projected climate change. The total volume of annual streamflow would vary between −41 and +16% compared to the baseline years (1970–1990). Even if the precipitation remains unchanged, the total annual flow would still decrease by 8–23% due to temperature increases. A larger portion of the streamflow would occur earlier in the water year by 15–46 days due to the temperature increases, causing higher seasonal variability of streamflow.


2019 ◽  
Vol 11 (10) ◽  
pp. 2845 ◽  
Author(s):  
Ruoyu Wang ◽  
Huajin Chen ◽  
Yuzhou Luo ◽  
Patrick Moran ◽  
Michael Grieneisen ◽  
...  

Nitrogen loading from agricultural landscapes can trigger a cascade of detrimental effects on aquatic ecosystems. Recently, the spread of aquatic weed infestations (Eichhornia crassipes, Egeria densa, Ludwigia spp., and Onagraceae) in the Sacramento-San Joaquin Delta of northern California has raised concerns, and nitrogen loading from California’s intensive farming regions is considered as one of the major contributors. In this study, we employed the Soil and Water Assessment Tool (SWAT) to simulate nitrogen exports from the agriculturally intensive San Joaquin River watershed to the Delta. The alternate tile drainage routine in SWAT was tested against monitoring data in the tile-drained area of the watershed to examine the suitability of the new routine for a tile nitrate simulation. We found that the physically based Hooghoudt and Kirkham tile drain routine improved model performance in representing tile nitrate runoff, which contributed to 40% of the nitrate loading to the San Joaquin River. Calibration results show that the simulated riverine nitrate loads matched the observed data fairly well. According to model simulation, the San Joaquin River plays a critical role in exporting nitrogen to the Delta by exporting 3135 tons of nitrate-nitrogen annually, which has a strong ecological implication in supporting the growth of aquatic weeds, which has impeded water flow, impairs commercial navigation and recreational activities, and degrades water quality in Bay-Delta waterways. Since nitrate loadings contributed by upstream runoff are an important nutrient to facilitate weed development, our study results should be seen as a prerequisite to evaluate the potential growth impact of aquatic weeds and scientific evidence for area-wide weed control decisions.


2017 ◽  
Vol 18 (5) ◽  
pp. 1471-1488 ◽  
Author(s):  
James M. Gilbert ◽  
Reed M. Maxwell ◽  
David J. Gochis

Abstract The boundary layer, land surface, and subsurface are important coevolving components of hydrologic systems. While previous studies have examined the connections between soil moisture, groundwater, and the atmosphere, the atmospheric response to regional water-table drawdown has received less attention. To address this question, a coupled hydrologic–atmospheric model [Parallel Flow hydrologic model (ParFlow) and WRF] was used to simulate the San Joaquin River watershed of central California. This study focuses specifically on the planetary boundary layer (PBL) in simulations with two imposed water-table configurations: a high water table mimicking natural conditions and a lowered water table reflecting historic groundwater extraction in California’s Central Valley, although effect of irrigation was not simulated. An ensemble of simulations including three boundary layer schemes and six initial conditions was performed for both water-table conditions to assess conceptual and initial condition uncertainty. Results show that increased regional water-table depth is associated with a significant increase in peak PBL height for both initial condition and boundary layer scheme conditions, although the choice of scheme interacts to affect the magnitude of peak PBL height change. Analysis of simulated land surface fluxes shows the change in PBL height can be attributed to decreasing midday evaporative fraction under lowered water-table conditions. Furthermore, the sensitivity of PBL height to changes in water-table depth appears to depend on local water-table variation within 10 m of the land surface and the regional average water-table depth. Finally, soil moisture changes associated with lowered water tables are linked to changes in PBL circulation as indicated by vertical winds and turbulence kinetic energy.


1990 ◽  
Vol 87 ◽  
pp. 1159-1172 ◽  
Author(s):  
P Dagaut ◽  
M Cathonnet ◽  
B Aboussi ◽  
JC Boettner

Sign in / Sign up

Export Citation Format

Share Document