scholarly journals Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons

2016 ◽  
Vol 43 (8) ◽  
pp. 1546-1562 ◽  
Author(s):  
Laura Evangelista ◽  
Francesco Bertoldo ◽  
Francesco Boccardo ◽  
Giario Conti ◽  
Ilario Menchi ◽  
...  
2004 ◽  
Vol 122 (5) ◽  
pp. 208-212 ◽  
Author(s):  
Elba Cristina Sá de Camargo Etchebehere ◽  
Carlos Araújo Cunha Pereira Neto ◽  
Mariana Cunha Lopes de Lima ◽  
Allan de Oliveira Santos ◽  
Celso Darío Ramos ◽  
...  

CONTEXT: More than 50% of patients with prostate, breast or lung cancer will develop painful bone metastases. The purpose of treating bone metastases is to relieve pain, reduce the use of steroids and to maintain motion. OBJECTIVE: To evaluate the use of samarium-153-EDTMP (153Sm-EDTMP) for the treatment of bone pain secondary to metastases that is refractory to clinical management. TYPE OF STUDY: Retrospective. SETTING: Division of Nuclear Medicine, Universidade Estadual de Campinas (Unicamp). METHODS: Fifty-eight patients were studied (34 males) with mean age 62 years; 31 patients had prostate cancer, 20 had breast cancer, three had lung cancer, one had lung hemangioendothelioma, one had parathyroid adenocarcinoma, one had osteosarcoma and one had an unknown primary tumor. All patients had multiple bone metastases demonstrated by bone scintigraphy using 99mTc-MDP,and were treated with 153Sm-EDTMP. Response to treatment was graded as good (pain reduction of 50-100%), intermediate (25-49%) and poor (0-24%). RESULTS: All patients showed good uptake of 153Sm-EDTMP by bone metastases. Among the patients with prostate cancer, intermediate or good response to therapy occurred in 80.6% (25 patients) and poor response in 19.4% (6). Among the patients with breast cancer, 85% (17) showed intermediate or good response to therapy while 15% (3) showed poor response. All three patients with lung cancer showed poor response to treatment. The lung hemangioendothelioma and unknown primary lesion patients showed intermediate response to treatment; the osteosarcoma and parathyroid adenocarcinoma patients showed good response to treatment. No significant myelotoxicity occurred. DISCUSSION: Pain control is important for improving the quality of life of patients with advanced cancers. The mechanism by which pain is relieved with the use of radionuclides is still not yet completely understood, however, the treatment is simple and provides a low risk of mielotoxicity. CONCLUSION: Treatment with 153Sm-EDTMP can control the pain secondary to bone metastases effectively in most patients with breast and prostate cancer without significant side effects.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 277
Author(s):  
Mikhail Kesler ◽  
Ido Druckmann ◽  
Charles Levine ◽  
Jonathan Kuten ◽  
Ofer Yossepowitch ◽  
...  

Bone metastases from prostate cancer (PCa) often show an increase in density on computed tomography (CT) after successful androgen deprivation therapy (ADT). Density may be reduced, however, as the disease progresses or, contrarily, when disease is no longer active. The current study investigated the role of 68Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) in differentiating between these two conditions. Methods: The study cohort included 15 PCa patients with sclerotic/blastic bone metastasis in whom reduction in bone density of metastasis was noted on follow-up 68Ga-PSMA-11 PET/CT after ADT. Each patient had two PET/CT scans. Prior to the first scan, six patients were castration naïve and nine patients were already treated. All patients had ADT between the two PET/CT scans. PET parameters (SUVmax and tumor-to-background ratio), and CT parameters (HUmax) were determined and compared for each lesion on both scans. Patient’s response was based on prostate-specific antigen (PSA) levels and appearance of new lesions. The Kolmogorov–Smirnov test was used to evaluate normal distribution of the continuous variables. Results: Post-ADT reduction in bone density was identified in 37 lesions. The mean HUmax was 883.9 ± 175.1 on the first scan and 395.6 ± 157.1 on the second scan (p < 0.001). Twenty-one of the 37 lesions showed no increased tracer uptake on the second PET/CT scan raising the likelihood of a response. The other 16 lesions were associated with increased uptake suggestive of an active resistant disease. Bone density was not different in lesions that no longer showed an increased uptake as compared with those that did. Seven of the study patients responded to therapy, and none of the 16 lesions found in these patients showed increased 68Ga-PSMA-11 uptake. In eight patients with progressive disease, all 12 lesions in five of them showed increased 68Ga-PSMA-11 uptake, there was mixed response in two patients (having two lesions with increased uptake and one without) and although all three lesions no longer showed an increased uptake, new lesions were detected in the eighth patient. Conclusion: A decrease in density of bone lesions may reflect clinical progression, or contrarily, a response to therapy in patients with PCa and skeletal involvement treated with ADT. Uptake of 68Ga-PSMA-11 may separate between these two vastly opposing conditions.


2020 ◽  
Vol 21 (15) ◽  
pp. 1558-1565
Author(s):  
Matteo Santoni ◽  
Francesco Massari ◽  
Liang Cheng ◽  
Alessia Cimadamore ◽  
Marina Scarpelli ◽  
...  

The carcinogenesis of prostate cancer (PCa) results from a complex series of events. Chronic inflammation and infections are crucial in this context. Infiltrating M2 type macrophages, as well as neutrophils and T lymphocytes, contribute to PCa development, progression and response to therapy. The preliminary findings on the efficacy of immunotherapy in patients with PCa were not encouraging. However, a series of studies investigating anti-PD-L1 agents such as Atezolizumab, Avelumab and Durvalumab used alone or in combination with other immunotherapies, chemotherapy or locoregional approaches are in course in this tumor. In this review, we illustrate the role of immune cells and PD-L1 expression during PCa carcinogenesis and progression, with a focus on ongoing clinical trials on anti-PD-L1 agents in this context.


Author(s):  
Jinguo Zhang ◽  
Guanzhong Zhai ◽  
Bin Yang ◽  
Zhenhe Liu

Prostate cancer is one of the most common cancers in men. This cancer is often associated with indolent tumors with little or no lethal potential. Some of the patients with aggressive prostate cancer have increased morbidity and early deaths. A major complication in advanced prostate cancer is bone metastasis that mainly results in pain, pathological fractures, and compression of spinal nerves. These complications in turn cause severe pain radiating to the extremities and possibly sensory as well as motor disturbances. Further, in patients with a high risk of metastases, treatment is limited to palliative therapies. Therefore, accurate methods for the detection of bone metastases are essential. Technical advances such as single-photon emission computed tomography/ computed tomography (SPECT/CT) have emerged after the introduction of bone scans. These advanced methods allow tomographic image acquisition and help in attenuation correction with anatomical co-localization. The use of positron emission tomography/CT (PET/CT) scanners is also on the rise. These PET scanners are mainly utilized with 18F-sodium-fluoride (NaF), in order to visualize the skeleton and possible changes. Moreover, NaF PET/CT is associated with higher tracer uptake, increased target-to-background ratio and has a higher spatial resolution. However, these newer technologies have not been adopted in clinical guidelines due to lack of definite evidence in support of their use in bone metastases cases. The present review article is focused on current perspectives and challenges of computerized tomography (CT) applications in cases of bone metastases during prostate cancer.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 384
Author(s):  
Daniel E. Hagaman ◽  
Jossana A. Damasco ◽  
Joy Vanessa D. Perez ◽  
Raniv D. Rojo ◽  
Marites P. Melancon

Patients with advanced prostate cancer can develop painful and debilitating bone metastases. Currently available interventions for prostate cancer bone metastases, including chemotherapy, bisphosphonates, and radiopharmaceuticals, are only palliative. They can relieve pain, reduce complications (e.g., bone fractures), and improve quality of life, but they do not significantly improve survival times. Therefore, additional strategies to enhance the diagnosis and treatment of prostate cancer bone metastases are needed. Nanotechnology is a versatile platform that has been used to increase the specificity and therapeutic efficacy of various treatments for prostate cancer bone metastases. In this review, we summarize preclinical research that utilizes nanotechnology to develop novel diagnostic imaging tools, translational models, and therapies to combat prostate cancer bone metastases.


Sign in / Sign up

Export Citation Format

Share Document