Preparation, characterization, and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery

2011 ◽  
Vol 68 (6) ◽  
pp. 1707-1720 ◽  
Author(s):  
Jingou Ji ◽  
Danjun Wu ◽  
Li Liu ◽  
Jida Chen ◽  
Yi Xu
Nano LIFE ◽  
2021 ◽  
pp. 2140005
Author(s):  
Rahman Moradi ◽  
Reza Mohammadzadeh ◽  
Ali Akbari

In this study, the Aspergillus niger L-arginase was expressed in Pichia pastorise and immobilized on Kappa-carrageenan crosslinked magnetic folic acid-conjugated chitosan nanoparticles (magnetic-FA/CTS NPs). L-arginase gene was isolated and cloned in pGAPZ[Formula: see text]A plasmid and transformed in P. pastoris. The purified L-arginase was loaded on magnetic-FA/CTS NPs nanocomposites and the structure of the synthesized nano-carriers was investigated using SEM, FT-IR and DLS techniques. Prepared formulations showed high encapsulation efficiency (91.93%). In vitro release and cytotoxic studies were performed at different pH (pH of 4–8) and against Molt-4 cancer cell line, respectively.


Author(s):  
Sudhakar Sekar ◽  
Shee Sim May

The aim of the study is to formulate a modified release chitosan nanoparticles for the oral delivery of atorvastatin and to study the in vitro release of atorvastatin from chitosan nanoparticles. Atorvastatin-loaded chitosan nanoparticles were prepared with different concentration of cross-linking agent (glutaraldehyde) by emulsion interfacial reaction method. The formed nanoparticles were characterized in terms of size and morphological characteristics by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Spherical and regular nanoparticles with the size range of 100-250nm were formed. Atorvastatin encapsulation efficiency of nanoparticles was found to be highest in ANP3, followed by ANP2 and ANP1. The in vitro release of atorvastatin was studied by membrane diffusion technique. The resulted cumulative percentage of drug released for ANP1, ANP2 and ANP3 were 60.08%, 34.81% and 20.39% respectively. Through this study, the nanoparticles preparation technique has shown to be a promising approach for enhancing the dissolution of hydrophobic drugs like atorvastatin calcium. The application of this novel delivery system offers good therapeutic potential in the management of hypercholesterolemia and dyslipidemia.


Author(s):  
SUVARNA G. BHOKARE ◽  
RAJENDRA P. MARATHE

Objective: The objective of the present study was to develop sustained release biodegradable polymeric nanoparticles of rosuvastatin calcium. Methods: Nanoparticles were prepared by modified ionotropic gelation method using 3² full factorial designs. From the preliminary trials, the constraints for independent variables X1 (concentration. of chitosan) and X2 (concentration. of sodium tripolyphosphate) have been fixed. Factors included concentration of chitosan and sodium tripolyphosphate, have been examined to investigate effect on particle size, encapsulation efficiency, zeta potential, % release, scanning electron microscopy, Fourier transfer infrared study and X-ray diffraction and release study of rosuvastatin calcium nanoparticles. 0 Results: The prepared nanoparticles were white, free-flowing and spherical in shape. The infrared spectra showed stable character of rosuvastatin calcium in the drug-loaded nanoparticles and revealed the absence of drug polymer interactions. The chitosan nanoparticles have a particle diameter ranging approximately 114.5±3.61 to 724±.2.51 nm and a zeta potential-13.12 to-52.63 mV. The in vitro release behavior from all the drug loaded batches were found to follow first order and provided sustained release over a period of 10 h. The Zeta potential of all the batches were in the range of-13.12 to-52.63 mv. The release profiles of all batches were very well fitted by Korsmeyer Peppas model. Conclusion: The best-fit release kinetics was achieved with Korsmeyer peppas model. The release of rosuvastatin calcium was influenced by the drug to polymer ratio and particle size. These results indicate that rosuvastatin calcium nanoparticles could be effective in sustaining drug release for a prolonged period.


Sign in / Sign up

Export Citation Format

Share Document