Transgenic Campanula carpatica plants with reduced ethylene sensitivity

2007 ◽  
Vol 26 (6) ◽  
pp. 805-813 ◽  
Author(s):  
Sridevy Sriskandarajah ◽  
Heiko Mibus ◽  
Margrethe Serek
Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 71-71
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

The production of potted ornamental plants is very important in the Albenga Region of northern Italy, where plants are grown for export to central and northern Europe. During fall 2000 and spring 2001, sudden wilt of tussock bellflower (Campanula carpatica Jacq.) and butterfly flower (Schizanthus × wisetonensis Hort.) was observed on potted plants in a commercial greenhouse. Initial symptoms included stem necrosis at the soil line and yellowing and tan discoloration of the lower leaves. As stem necrosis progressed, infected plants growing in a peat, bark compost, and clay mixture (70-20-10) wilted and died. Necrotic tissues were covered with whitish mycelia that produced dark, spherical (2 to 6 mm diameter) sclerotia. Sclerotinia sclerotiorum was consistently recovered from symptomatic stem pieces of both plants disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with streptomycin sulphate at 100 ppm. Pathogenicity of three isolates obtained from each crop was confirmed by inoculating 45- to 60-day-old C. carpatica and Schizanthus × wisetonensis plants grown in containers (14 cm diameter). Inoculum that consisted of wheat kernels infested with mycelia and sclerotia of each isolate was placed on the soil surface around the base of previously artificially wounded or nonwounded plants. Noninoculated plants served as controls. All plants were maintained outdoors where temperatures ranged between 8 and 15°C. Inoculated plants developed symptoms of leaf yellowing, followed by wilt, within 7 to 10 days, while control plants remained symptomless. White mycelia and sclerotia developed on infected tissues and S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of stem blight of C. carpatica and Schizanthus × wisetonensis caused by S. sclerotiorum in Italy. The disease was previously observed on C. carpatica in Great Britain (2) and on Schizanthus sp. in the United States (1). References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) J. Rees. Welsh J. Agric. 1:188, 1925.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Priya Singh ◽  
Neeraj Bharti ◽  
Amar Pal Singh ◽  
Siddharth Kaushal Tripathi ◽  
Saurabh Prakash Pandey ◽  
...  

Abstract Flowers of fragrant roses such as Rosa bourboniana are ethylene-sensitive and undergo rapid petal abscission while hybrid roses show reduced ethylene sensitivity and delayed abscission. To understand the molecular mechanism underlying these differences, a comparative transcriptome of petal abscission zones (AZ) of 0 h and 8 h ethylene-treated flowers from R. bourboniana was performed. Differential regulation of 3700 genes (1518 up, 2182 down) representing 8.5% of the AZ transcriptome was observed between 0 and 8 h ethylene-treated R. bourboniana petal AZ. Abscission was associated with large scale up-regulation of the ethylene pathway but prominent suppression of the JA, auxin and light-regulated pathways. Regulatory genes encoding kinases/phosphatases/F-box proteins and transcription factors formed the major group undergoing differential regulation besides genes for transporters, wall modification, defense and phenylpropanoid pathways. Further comparisons with ethylene-treated petals of R. bourboniana and 8 h ethylene-treated AZ (R. hybrida) identified a core set of 255 genes uniquely regulated by ethylene in R. bourboniana AZ. Almost 23% of these encoded regulatory proteins largely conserved with Arabidopsis AZ components. Most of these were up-regulated while an entire set of photosystem genes was prominently down-regulated. The studies provide important information on regulation of petal abscission in roses.


2010 ◽  
Vol 57 (4) ◽  
pp. 554-559 ◽  
Author(s):  
Z. L. Hu ◽  
L. Deng ◽  
X. Q. Chen ◽  
P. Q. Wang ◽  
G. P. Chen

2017 ◽  
pp. 271-280 ◽  
Author(s):  
O. Kemp ◽  
B.T. Favero ◽  
J.N. Hegelund ◽  
S.R. Møller ◽  
R. Müller ◽  
...  

2016 ◽  
Vol 121 ◽  
pp. 78-86 ◽  
Author(s):  
Byung-Chun In ◽  
Brad M. Binder ◽  
Tanya G. Falbel ◽  
Sara E. Patterson

1997 ◽  
Vol 71 (3-4) ◽  
pp. 235-242 ◽  
Author(s):  
Lars G. Dinesen ◽  
A.Skytt Andersen ◽  
Margrethe Serek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document