A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis

2015 ◽  
Vol 34 (5) ◽  
pp. 871-884 ◽  
Author(s):  
Chunfeng Guan ◽  
Jing Ji ◽  
Cuicui Jia ◽  
Wenzhu Guan ◽  
Xiaozhou Li ◽  
...  
2019 ◽  
Vol 5 ◽  
pp. 13-18
Author(s):  
Yana Kavulych ◽  
Myroslava Kobyletska ◽  
Olga Terek

Salicylic acid (SA) is an imperative endogenous plant hormone. It is considered as one of the most important signaling molecule, involved in both abiotic and biotic stress tolerance. Application of optimal concentrations (0,05 mM) of SA enhances plants tolerance to cadmium stress by modulating levels of several metabolites, including components of antioxidative defense, osmolytes, secondary metabolites, and metal-chelating compounds. We showed that when SA and Cd were applied simultaneously, the damage was less pronounced than without SA. SA treatment itself also caused the oxidative stress, but decreased flavonoids content, regulated phenolic synthesis and lignin formation. Thus, the main purpose was to investigate how SA treatment, used prior the Cd stress, prevented the damaging heavy metal effects in buckwheat plants. And show that regulation of flavonoids and lignin formation are an important indicator of stability and stress resistance. The obtained data will expand the knowledge about the role of phenolic compounds and the action of salicylate under the cadmium chloride conditions. Also data with this type of buckwheat – Fagopyrum esculentum Moench, Rubra variety under the action of cadmium chloride and salicylic acid not found.


2018 ◽  
Vol 34 (1) ◽  
pp. 37-44
Author(s):  
A. Hemantaranjan ◽  
◽  
Deepmala Katiyar ◽  
Jharna Vyas ◽  
A. Nishant Bhanu ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 557 ◽  
Author(s):  
Li He ◽  
Xiaomin Wang ◽  
Ruijun Feng ◽  
Qiang He ◽  
Shengwang Wang ◽  
...  

Alternative pathway (AP) has been widely accepted to be involved in enhancing tolerance to various environmental stresses. In this study, the role of AP in response to cadmium (Cd) stress in two barley varieties, highland barley (Kunlun14) and barley (Ganpi6), was investigated. Results showed that the malondialdehyde (MDA) content and electrolyte leakage (EL) level under Cd stress increased in two barley varieties. The expressions of alternative oxidase (AOX) genes (mainly AOX1a), AP capacity (Valt), and AOX protein amount were clearly induced more in Kunlun14 under Cd stress, and these parameters were further enhanced by applying sodium nitroprussid (SNP, a NO donor). Moreover, H2O2 and O2− contents were raised in the Cd-treated roots of two barley varieties, but they were markedly relieved by exogenous SNP. However, this mitigating effect was aggravated by salicylhydroxamic acid (SHAM, an AOX inhibitor), suggesting that AP contributes to NO-enhanced Cd stress tolerance. Further study demonstrated that the effect of SHAM application on reactive oxygen species (ROS)-related scavenging enzymes and antioxidants was minimal. These observations showed that AP exerts an indispensable function in NO-enhanced Cd stress tolerance in two barley varieties. AP was mainly responsible for regulating the ROS accumulation to maintain the homeostasis of redox state.


2016 ◽  
Vol 35 (4) ◽  
pp. 719-731 ◽  
Author(s):  
Zhouping Liu ◽  
Yanfei Ding ◽  
Feijuan Wang ◽  
Yaoyao Ye ◽  
Cheng Zhu

2014 ◽  
Vol 22 (2) ◽  
pp. 1457-1467 ◽  
Author(s):  
Aïcha Belkadhi ◽  
Antonio De Haro ◽  
Sara Obregon ◽  
Wided Chaïbi ◽  
Wahbi Djebali

Sign in / Sign up

Export Citation Format

Share Document